refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 66 results
Sort by

Filters

Technology

Platform

accession-icon GSE17743
Gene expression profiles differentiating gastrointestinal stromal tumours according to KIT mutations and expression
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gastrointestinal stromal tumours (GISTs) represent a heterogeneous group of tumours of mesenchymal origin characterized by gain-of-function mutations in KIT or PDGFRA of the type III receptor tyrosine kinase family. Although mutations in either receptor are thought to drive an early oncogenic event through similar pathways, two previous studies reported the mutation-specific gene expression profiles. However, their further conclusions were rather discordant. To clarify the molecular characteristics of differentially expressed genes according to GIST receptor mutations, we combined microarray-based analysis with detailed functional annotations.

Publication Title

Functional features of gene expression profiles differentiating gastrointestinal stromal tumours according to KIT mutations and expression.

Sample Metadata Fields

Sex, Specimen part, Disease stage

View Samples
accession-icon SRP185707
Transcriptomic analysis of the effect of histone H4 K31R mutation in U2OS cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

To explore the genome-wide gene expression changes induced by the K31R mutation in the histone H4 protein, we performed RNA-sequencing analysis in U2OS cells expressing either wildtype H4 or K31R mutant H4. We found that the lysine (K) to arginine (R) mutation mainly affected oxidative phosphorylation, mtiochondria dysfunction and et al, but not DNA damage signaling pathways. Overall design: Total RNAs were extracted from 3 wild-type (WT) H4 and 3 K31R mutant H4 expressing U2OS cells and profiled by RNA-sequencing.

Publication Title

UFL1 promotes histone H4 ufmylation and ATM activation.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE31123
Discovery of genes differentially-expressed in the endothelium of lymph nodes draining metastatic versus non-metastatic tumors
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Metastasis to lymph nodes is an early and prognostically important event in the progression of many human cancers, and is associated with expression of vascular endothelial growth factor-D (VEGF-D). Changes to lymph node vasculature occur during metastasis, and may establish a metastatic niche capable of attracting and supporting tumor cells.

Publication Title

A role for bone morphogenetic protein-4 in lymph node vascular remodeling and primary tumor growth.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE41942
Overexpression of miR-9 and miR-9* in 32D cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Overexpression of miR-9 and miR-9* in 32D cells, cells grown under IL-3 conditions and miR-9 and miR-9* were introduced with retroviral vectors containing about ~150 bp up and downstream of mmu-mir-9-2.

Publication Title

Aberrant expression of miR-9/9* in myeloid progenitors inhibits neutrophil differentiation by post-transcriptional regulation of ERG.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE47900
Differential gene expression analysis in motor and sensory cortex as a result of experimental autoimmune encephalomyelitis (EAE), a neuroinflammatory model for Multiple sclerosis.
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We performed micrarrays to investigate neuronal gene expression changes during acute inflammatory CNS axon injury using the murine myelin oligodendrocyte glycoprotein 35-55 (MOG35-55)-induced experimental autoimmune encephalomyelitis (EAE) model. The present study was assigned to assess the direct and indirect endogenous neuronal response to spinal axonal injury in the motor and sensory cortex.

Publication Title

Axonally derived matrilin-2 induces proinflammatory responses that exacerbate autoimmune neuroinflammation.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE80259
Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

BACKGROUND. Dietary intake of saturated fat is a likely contributor to nonalcoholic fatty liver disease (NAFLD) and insulin resistance, but the mechanisms that initiate these abnormalities in humans remain unclear. We examined the effects of a single oral saturated fat load on insulin sensitivity, hepatic glucose metabolism, and lipid metabolism in humans. Similarly, initiating mechanisms were examined after an equivalent challenge in mice.

Publication Title

Acute dietary fat intake initiates alterations in energy metabolism and insulin resistance.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon SRP102003
The Stability of the Transcriptome during the Estrous Cycle in Four Regions of the Mouse Brain
  • organism-icon Mus musculus
  • sample-icon 41 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We analyzed the transcriptome of the C57BL/6J mouse hypothalamus, hippocampus, neocortex, and cerebellum to determine estrous cycle-specific changes in these four brain regions. We found almost 16,000 genes are present in one or more of the brain areas but only 210 genes, ~1.3%, are significantly changed as a result of the estrous cycle. The hippocampus has the largest number of differentially expressed genes (DEGs) (82), followed by the neocortex (76), hypothalamus (63), and cerebellum (26). Most of these DEGs (186/210) are differentially expressed in only one of the four brain regions. A key finding is the unique expression pattern of growth hormone (Gh) and prolactin (Prl). Gh and Prl are the only DEGs to be expressed during only one stage of the estrous cycle (metestrus). To gain insight into the function of the DEGs, we examined gene ontology and phenotype enrichment and found significant enrichment for genes associated with myelination, hormone stimulus, and abnormal hormone levels. Additionally, 61 of the 210 DEGs are known to change in response to estrogen in the brain. 50 genes differentially expressed as a result of the estrous cycle are related to myelin and oligodendrocytes and 12 of the 63 DEGs in the hypothalamus are oligodendrocyte- and myelin-specific genes. This transcriptomic analysis reveals that gene expression in the female mouse brain is remarkably stable during the estrous cycle and demonstrates that the genes that do fluctuate are functionally related. Overall design: Hypothalamus, hippocampus, neocortex, and cerebellum mRNA from adult female C57BL/6J (B6) mice were analyzed by RNA sequencing of 3 biological replicates for each of the 4 stages of the estrous cycle using an Illumina HiSeq 2500

Publication Title

The stability of the transcriptome during the estrous cycle in four regions of the mouse brain.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP077669
Sex differences in the molecular signature of the developing mouse hippocampus
  • organism-icon Mus musculus
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

A variety of neurological disorders, including Alzheimer's disease, Parkinson's disease, major depressive disorder, dyslexia and autism, are differentially prevalent between females and males. To better understand the possible molecular basis for the sex-biased nature of neurological disorders, we measured both mRNA and protein in the hippocampus of female and male mice at 1, 2, and 4 months of age with RNA-sequencing and mass-spectrometry respectively. Differential expression analyses identify 2699 genes that are differentially expressed between animals of different ages. 198 transcripts are differentially expressed between females and males at one or more ages. The number of transcripts that are differentially expressed between females and males is greater in adult animals than in younger animals. Additionally, we identify 69 transcripts that show complex and sex-specific patterns of temporal regulation across all ages, 8 of which are heat-shock proteins. We also find a modest correlation between levels of mRNA and protein in the mouse hippocampus (Rho = 0.53). This study adds to the substantial body of evidence for transcriptomic regulation in the hippocampus during postnatal development. Additionally, this analysis reveals sex differences in the transcriptome of the developing mouse hippocampus, and further clarifies the need to include both female and male mice in longitudinal studies involving molecular changes in the hippocampus. Overall design: Hippocampal mRNA from 1, 2, and 4 month old male and female B6 mice were analyzed by RNA sequencing of 5 biological replicates using an Illumina HiSeq 2500

Publication Title

Sex differences in the molecular signature of the developing mouse hippocampus.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP096580
MACROD2 haploinsufficiency promotes chromosome instability and growth of intestinal tumors
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

RNA-Seq data from intestinal tumors of ApcMin/+/Macrod2-/-,ApcMin/+/Macrod2-/+ and ApcMin/+/Macrod2+/+ mice (6 tumors per group) Overall design: Examine mRNA expression level changes between tumors by Macrod2 genotype

Publication Title

<i>MACROD2</i> Haploinsufficiency Impairs Catalytic Activity of PARP1 and Promotes Chromosome Instability and Growth of Intestinal Tumors.

Sample Metadata Fields

Sex, Specimen part, Cell line, Subject

View Samples
accession-icon SRP102581
Sex-biased hippocampal pathology in the 5XFAD mouse model of Alzheimer's disease: A multi-omic analysis
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Numerous neurological disorders, including Alzheimer's disease, display a sex-biased prevalence. To identify molecular correlates of this sex bias, we investigated sex-differences in molecular pathology in the hippocampus using the 5XFAD mouse model of Alzheimer's disease during early stages of disease progression (1, 2, and 4 months of age). Overall design: Hippocampal mRNA from 1, 2, and 4 month old male and female 5XFAD mice were analyzed by RNA sequencing of 5 biological replicates using an Illumina HiSeq 2500

Publication Title

Sex-biased hippocampal pathology in the 5XFAD mouse model of Alzheimer's disease: A multi-omic analysis.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact