refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 66 results
Sort by

Filters

Technology

Platform

accession-icon GSE85074
Side population phenotype in quiescent human/murine tissue resident memory (TRM) T cells: Role of ABC transporters and NR4A1 in TRM biology
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The ability to detect and isolate human CD8 TSP (Side population), Nave, Effector memory (EM), Central memory (CM) cells allowed us to compare the global gene expression profiles of these cells. Human TSP cells comprise of distinct gene expression profile specifically enriched for genes overexpressed in TRM cells.

Publication Title

ABC transporters and NR4A1 identify a quiescent subset of tissue-resident memory T cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP077288
The FAM46C gene encodes a non-canonical poly(A) polymerase and acts as an onco-suppressor in multiple myeloma
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, NextSeq 500

Description

FAM46C is one of the most frequently mutated genes in multiple myeloma (MM) and encodes a protein of unknown function. Using a combination of in vitro and in vivo approaches, we demonstrate that FAM46C encodes an active cytoplasmic non-canonical poly(A) polymerase, which enhances mRNA stability and gene expression. Moreover, we also found that the reintroduction of active FAM46C into MM cell lines, but not its catalytically-inactive mutant, leads to broad polyadenylation and stabilization of mRNAs strongly enriched with those encoding endoplasmic reticulum-targeted proteins and induced cell death. This is, to our knowledge, the first report that directly associates cytoplasmic poly(A) polymerase with carcinogenesis. Furthermore, our data suggest that the human genome encodes at least eleven non-canonical poly(A) polymerases with four FAM46 family members. Since FAM46 proteins are differentially expressed during development, these proteins may positively regulate transcript stability and translational rate in a tissue-specific manner. Overall design: The H929 and SKMM1 MM cells were transduced with lentiviruses carrying FAM46CWTGFP (WT) or FAM46CD90A,D92AGFP (catalitic mutant). 72h after transgene delivery total RNA was extracted and RNA-seq libraries were prepared.

Publication Title

The non-canonical poly(A) polymerase FAM46C acts as an onco-suppressor in multiple myeloma.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP185707
Transcriptomic analysis of the effect of histone H4 K31R mutation in U2OS cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

To explore the genome-wide gene expression changes induced by the K31R mutation in the histone H4 protein, we performed RNA-sequencing analysis in U2OS cells expressing either wildtype H4 or K31R mutant H4. We found that the lysine (K) to arginine (R) mutation mainly affected oxidative phosphorylation, mtiochondria dysfunction and et al, but not DNA damage signaling pathways. Overall design: Total RNAs were extracted from 3 wild-type (WT) H4 and 3 K31R mutant H4 expressing U2OS cells and profiled by RNA-sequencing.

Publication Title

UFL1 promotes histone H4 ufmylation and ATM activation.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE31123
Discovery of genes differentially-expressed in the endothelium of lymph nodes draining metastatic versus non-metastatic tumors
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Metastasis to lymph nodes is an early and prognostically important event in the progression of many human cancers, and is associated with expression of vascular endothelial growth factor-D (VEGF-D). Changes to lymph node vasculature occur during metastasis, and may establish a metastatic niche capable of attracting and supporting tumor cells.

Publication Title

A role for bone morphogenetic protein-4 in lymph node vascular remodeling and primary tumor growth.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE71212
Expression data from Jurkat cells treated with SB225002 for 6h and 9h.
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

In our efforts to evaluate the function of the IL-8 receptor CXCR2 in Acute Lymphoblastic Leukemia (ALL) cells, we made use of SB225002 (N-(2-hydroxy-4-nitrophenyl)-N-(2-bromophenyl)urea), a drug initially described as a CXCR2 antagonist. Although the CXCR2 receptor was found to be non-functional in ALL, B- and T-ALL cell lines were sensitive to SB225002.

Publication Title

SB225002 Induces Cell Death and Cell Cycle Arrest in Acute Lymphoblastic Leukemia Cells through the Activation of GLIPR1.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE41942
Overexpression of miR-9 and miR-9* in 32D cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Overexpression of miR-9 and miR-9* in 32D cells, cells grown under IL-3 conditions and miR-9 and miR-9* were introduced with retroviral vectors containing about ~150 bp up and downstream of mmu-mir-9-2.

Publication Title

Aberrant expression of miR-9/9* in myeloid progenitors inhibits neutrophil differentiation by post-transcriptional regulation of ERG.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP156760
Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis [Timecourse RNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 910 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Non-coding RNAs regulate many biological processes including neurogenesis. The brain-enriched miR-124 is assigned as a key player of neuronal differentiation via its complex, but little understood, regulation of thousands of annotated targets. To systematically chart its regulatory functions, we used CRISPR/Cas9 gene editing to disrupt all six miR-124 alleles in human stem cells. Upon neuronal induction, miR-124-depleted cells underwent neurogenesis and became functional neurons, albeit with altered morphology and neurotransmitter specification. By RNA-induced-silencing-complex precipitation, we found that other miRNA species were upregulated in miR-124 depleted neurons. Furthermore, we identified 98 miR-124 targets of which some directly led to decreased viability. We performed advanced transcription-factor-network analysis and revealed indirect miR-124 effects on apoptosis and neuronal subtype differentiation. Our data emphasizes the need for combined experimental- and systems-level analyses to comprehensively disentangle and reveal miRNA functions, including their involvement in the neurogenesis of diverse neuronal cell types found in the human brain. Overall design: RNA profile for timecourse of neuronal Neurogenin-1 and 2-triggered differentiation from human iPSCs (wildtype and ?miR-124).

Publication Title

Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP156757
Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis [AGO2-RIP-Seq -miRNAs]
  • organism-icon Homo sapiens
  • sample-icon 93 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Non-coding RNAs regulate many biological processes including neurogenesis. The brain-enriched miR-124 is assigned as a key player of neuronal differentiation via its complex, but little understood, regulation of thousands of annotated targets. To systematically chart its regulatory functions, we used CRISPR/Cas9 gene editing to disrupt all six miR-124 alleles in human stem cells. Upon neuronal induction, miR-124-depleted cells underwent neurogenesis and became functional neurons, albeit with altered morphology and neurotransmitter specification. By RNA-induced-silencing-complex precipitation, we found that other miRNA species were upregulated in miR-124 depleted neurons. Furthermore, we identified 98 miR-124 targets of which some directly led to decreased viability. We performed advanced transcription-factor-network analysis and revealed indirect miR-124 effects on apoptosis and neuronal subtype differentiation. Our data emphasizes the need for combined experimental- and systems-level analyses to comprehensively disentangle and reveal miRNA functions, including their involvement in the neurogenesis of diverse neuronal cell types found in the human brain. Overall design: RNA interacting protein immunoprecipitation with AGO2 for miR-124 target enrichment from neuronal Neurogenin-1 and 2-triggered differentiation from human iPSCs (wildtype and ?miR-124) and subsequent sequencing.

Publication Title

Combined Experimental and System-Level Analyses Reveal the Complex Regulatory Network of miR-124 during Human Neurogenesis.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE17743
Gene expression profiles differentiating gastrointestinal stromal tumours according to KIT mutations and expression
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gastrointestinal stromal tumours (GISTs) represent a heterogeneous group of tumours of mesenchymal origin characterized by gain-of-function mutations in KIT or PDGFRA of the type III receptor tyrosine kinase family. Although mutations in either receptor are thought to drive an early oncogenic event through similar pathways, two previous studies reported the mutation-specific gene expression profiles. However, their further conclusions were rather discordant. To clarify the molecular characteristics of differentially expressed genes according to GIST receptor mutations, we combined microarray-based analysis with detailed functional annotations.

Publication Title

Functional features of gene expression profiles differentiating gastrointestinal stromal tumours according to KIT mutations and expression.

Sample Metadata Fields

Sex, Specimen part, Disease stage

View Samples
accession-icon GSE47900
Differential gene expression analysis in motor and sensory cortex as a result of experimental autoimmune encephalomyelitis (EAE), a neuroinflammatory model for Multiple sclerosis.
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We performed micrarrays to investigate neuronal gene expression changes during acute inflammatory CNS axon injury using the murine myelin oligodendrocyte glycoprotein 35-55 (MOG35-55)-induced experimental autoimmune encephalomyelitis (EAE) model. The present study was assigned to assess the direct and indirect endogenous neuronal response to spinal axonal injury in the motor and sensory cortex.

Publication Title

Axonally derived matrilin-2 induces proinflammatory responses that exacerbate autoimmune neuroinflammation.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact