refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 9 of 9 results
Sort by

Filters

Technology

Platform

accession-icon GSE22187
Changes in gene expression in implantation sites by absence of Cbs
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The change in gene expression on the 8th day of gestation was investigated using DNA microarrays.

Publication Title

Cystathionine β-synthase deficiency causes infertility by impairing decidualization and gene expression networks in uterus implantation sites.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE22189
Changes in gene expression in inter-implantation sites by absence of Cbs
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The change in gene expression on the 8th day of gestation was investigated using DNA microarrays. Uterine gene expression of interimplanted sites was analyzed in female mice.

Publication Title

Cystathionine β-synthase deficiency causes infertility by impairing decidualization and gene expression networks in uterus implantation sites.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE58548
Paradoxical neurobehavioral rescue by cues associated with infant trauma: Amygdala 5-HT and CORT
  • organism-icon Rattus norvegicus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

We show that infant trauma, as modeled by infant paired odor-shock conditioning, results in later life depressive-like behavior that can be modulated by learned infant cues (i.e., odor previously paired with shock). We have previously shown that this infant attachment odor learning paradigm results in the creation of a new artificial maternal odor that is able to control pup behavior and retain its value throughout development. Here, we assess the mechanism by which this artificial maternal odor is able to rescue depressive-like behavior and show that this anti-depressant like effect results in glucocorticoid and serotonin (5-HT) related changes in amygdala gene expression and is dependent on amygdala 5-HT. Furthermore, increasing amygdala 5-HT and blocking corticosterone (CORT) in the absence of odor mimics the adult rescue effects elicited by the artificial maternal odor, suggesting a mechanism by which odor presentation exerts its repair effects.

Publication Title

Enduring good memories of infant trauma: rescue of adult neurobehavioral deficits via amygdala serotonin and corticosterone interaction.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE54245
Expression profile for PA14 lasR rhlR double mutant with H2O2 stress
  • organism-icon Pseudomonas aeruginosa
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

Quorum sensing controls the expression of multiple virulence factors. PA14 genes lasR and rhlR are necessary for quorum sensing via homoserine lactones.

Publication Title

Quorum sensing enhancement of the stress response promotes resistance to quorum quenching and prevents social cheating.

Sample Metadata Fields

Treatment

View Samples
accession-icon SRP067181
Transcriptome sequencing of porcine liver samples
  • organism-icon Sus scrofa
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Identification of genes and causal mutations regulating growth and fatness traits in pig. Overall design: Transcriptome sequencing of 10 liver samples of two groups of divergent pigs for growth and fatness.

Publication Title

Using RNA-Seq SNP data to reveal potential causal mutations related to pig production traits and RNA editing.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE66988
Retinoid X Receptor activation reverses the age-related deficiency in myelin debris phagocytosis and enhances remyelination
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The efficiency of central nervous system (CNS) remyelination declines with age. This is in part due to an age-associated decline in the phagocytic removal of myelin debris, which contains inhibitors of oligodendrocyte progenitor cell differentiation. In this study we show that expression of genes involved in the retinoid X receptor (RXR) pathway are decreased with aging in myelin-phagocytosing cells. Loss of RXR function in young macrophages mimics aging by delaying remyelination after experimentally-induced demyelination, while RXR agonists partially restore myelin debris phagocytosis in aged macrophages. The FDA-approved RXR agonist bexarotene, when used in concentrations achievable in human subjects, caused a reversion of the gene expression profile in aging human monocytes to a more youthful profile. These results reveal the RXR pathway as a positive regulator of myelin debris clearance and a key player in the age-related decline in remyelination that may be targeted by available or newly-developed therapeutics.

Publication Title

Retinoid X receptor activation reverses age-related deficiencies in myelin debris phagocytosis and remyelination.

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
accession-icon SRP028138
Transcriptional profile in the colon in response to C. rodentium infection.
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The identification of Atg16L1 as a susceptibility gene has implicated antibacterial autophagy in the pathogenesis of Crohn''s disease, a major type of inflammatory bowel disease (IBD). However, the role of Atg16L1 during extracellular bacterial infections of the intestine has not been sufficiently examined and compared to the function of other IBD susceptibility genes such as Nod2. We now find that Atg16L1 mutant mice are extraordinarily resistant to intestinal disease induced by the model bacterial pathogen Citrobacter rodentium. We further demonstrate that Atg16L1 deficiency alters the intestinal environment to mediate an enhanced immune response that is dependent on monocytic cells, and that Atg16L1/Nod2 double mutant mice lose this advantage. These results reveal an unappreciated immuno-suppressive function of an IBD gene, and raise the possibility that gene variants that affect the autophagy pathway were evolutionarily maintained to protect against certain life-threatening infections. Overall design: Twenty samples have been analyzed. All are colonic tissue from mice. Controls are uninfected WT mice, uninfected Atg16L1 mutant mice (Atg16L1HM) (n=3/genotype). Treatment conditions are tissue from WT and Atg16L1 mutant mice 6 days after C. rodentium infection (n=4/genotype) and 15 days after infection (n=3/genotype).

Publication Title

A deficiency in the autophagy gene Atg16L1 enhances resistance to enteric bacterial infection.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE104886
IL-17RA-signaling modulates CD8+ T cell survival, differentiation and exhaustion during Trypanosoma cruzi infection
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

We used microarrays to compare gene expression profile of spleen CD8 T cells from IL-17RA KO and WT mice at different time-point after T. cruzi infection.

Publication Title

IL-17RA-Signaling Modulates CD8+ T Cell Survival and Exhaustion During <i>Trypanosoma cruzi</i> Infection.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon SRP055753
Mutational blows to Sox2+ cells induce epithelial squamous tumor initiation
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Cancer originates as the progressive accumulation of genetic mutations in proto-oncogenes and tumor suppressors. However, the early events underlying tumor initiation remain largely elusive, mostly due to the general lack of information regarding the cells-of-origin responsible for tumor formation as well as the precise impacts of genetic insults on tumor initiation in vivo. Here, we demonstrate that Sox2-positive (Sox2+) adult stem cells are responsible for epithelial squamous tumor formation. Conditional expression of oncogenic Kras (KrasG12D) and knockout of p53 (also known as Trp53) in Sox2+ cells quickly and specifically resulted in the formation of squamous tumors in the forestomach and esophagus. GFP-based lineage tracing experiments demonstrated that Sox2+ cells are the cells-of-origin of squamous tumors in the esophagus and forestomach. Of note, our data showed that p53 deletion alone did not suffice for tumor initiation. On the contrary, tumor initiation was observed upon KrasG12D activation whereas p53 deletion further contributed to the malignancy of the generated tumors, pointing out distinct roles for Kras activation and p53 deletion in squamous tumor formation and progression, to which a multihit carcinogenesis model can be applied. Global gene expression analysis revealed secreting factors upregulated in the generated tumors induced by oncogenic Kras, which contribute to tumor progression. Taken together, these results demonstrate that epithelial squamous tumors can specifically originate as a consequence of defined genetic mutations in a Sox2+ cell population and highlight the connections between proliferative stem cells and tumor development in vivo. Overall design: Expression profiling of mouse tissues with genetically induced tumors by RNA-Seq

Publication Title

Mutations in foregut SOX2<sup>+</sup> cells induce efficient proliferation via CXCR2 pathway.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact