refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 2 of 2 results
Sort by

Filters

Technology

Platform

accession-icon GSE14043
Genome-wide impact of ART-27 loss on androgen-regulated transcription in prostate cancer cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The androgen receptor (AR) directs diverse biological processes through interaction with coregulators such as androgen receptor trapped clone-27 (ART-27). The impact of ART-27 on genome-wide transcription was examined. The studies indicate that loss of ART-27 enhances expression of many androgen-regulated genes, suggesting that ART-27 inhibits gene expression. Surprisingly, classes of genes that are upregulated upon ART-27 depletion include regulators of DNA damage checkpoint and cell cycle progression, suggesting that ART-27 functions to keep expression levels of these genes low.

Publication Title

Genome-wide impact of androgen receptor trapped clone-27 loss on androgen-regulated transcription in prostate cancer cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP018287
An intricate interplay between astrocytes and motor neurons in ALS
  • organism-icon Mus musculus
  • sample-icon 59 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II, Illumina Genome Analyzer IIx

Description

Amyotrophic Lateral Sclerosis (ALS) results from the selective and progressive degeneration of motor neurons. Although the underlying disease mechanisms remain unknown, glial cells have been implicated in ALS disease progression. Here we examine the effects of glial cell/motor neuron interactions on gene expression, using the hSOD1G93A mouse model of ALS. We detect striking cell autonomous and non-autonomous changes in gene expression in co-cultured motor neurons and glia, revealing that the two cell types profoundly affect each other. In addition, we found a remarkable concordance between the cell culture data, expression profiles of whole spinal cords, and of acutely isolated spinal cord cells, during disease progression in the G93A mouse model, providing validation of the cell culture approach. Bioinformatics analyses identified changes in the expression of specific genes and signaling pathways that may contribute to motor neuron degeneration in ALS, among which are TGF-b signaling pathways. Overall design: RNA-seq profiles of: 1) 43 Sandwich culture samples at 3 different time points (3, 7 and 14 days), in duplicate, in different combinations of genetic background WT/SOD1_G93A mutant glia and WT/SOD1_G93A mutant neurons; 2) 16 spinal cord samples at 4 different time points, WT and SOD1_G93A mutant.

Publication Title

Intricate interplay between astrocytes and motor neurons in ALS.

Sample Metadata Fields

Sex, Subject, Time

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact