refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 30 results
Sort by

Filters

Technology

Platform

accession-icon GSE19345
Human Cytomegalovirus Infection Causes Premature and Abnormal Differentiation of Human Neural Progenitor Cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Our results suggest that HCMV infection disrupts the self-renewal capacity of NPCs and influences their differentiation.

Publication Title

Human cytomegalovirus infection causes premature and abnormal differentiation of human neural progenitor cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18934
Gene expression in fetal mesenchymal stem cells for identification of epitopes suitable for non-invasive isolation
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Human mesenchymal stem cells circulate in 1st and early 2nd trimester fetal blood, but not in adults. Like other fetal cell types they cross the placenta, and can be found in maternal organs decades later. To determine potential ligands in human fetal mesenchymal stem cells not present in maternal blood, the gene expression of 1st trimester human fetal bone marrow, liver and blood derived mesenchymal stem cells will be compared to blood mononuclear cells from pregnant women using a Affymetrix human gene array system.

Publication Title

Identification of candidate surface antigens for non-invasive prenatal diagnosis by comparative global gene expression on human fetal mesenchymal stem cells.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE70854
Microarray analysis reveals differential effects of conjugated linoleic acid isomers in ritonavir-treated 3T3-L1 adipocytes
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Objective: To quantify changes in adipogenic gene expression in the presence of ritonavir (RTV) or tenofovir (TDF), and determine whether conjugated linoleic acid (CLA) isomers (cis9,trans11 or trans10,cis12) can mitigate detrimental effects of antiretoviral drugs.

Publication Title

Microarray Analysis Reveals Altered Lipid and Glucose Metabolism Genes in Differentiated, Ritonavir-Treated 3T3-L1 Adipocytes.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE20037
cdr2 siRNA knockdown during passage through mitosis: HeLa cells, Rat1 wild type and c-myc null cells
  • organism-icon Homo sapiens, Rattus norvegicus
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

[Hela cells]: We performed cdr2 knockdown with a pool of 4 cdr2-specific siRNAs to test whether cdr2 may regulate c-myc target genes as cells passage through mitosis.

Publication Title

The onconeural antigen cdr2 is a novel APC/C target that acts in mitosis to regulate c-myc target genes in mammalian tumor cells.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE47820
Gene expression changes of Saccharomyces cerevisiae to linoleic acid hydroperoxide
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

Reactive oxygen species, generated in vivo or exogenously encountered, constantly challenge living organisms. Oxidation of polyunsaturated fatty acids (PUFA), which are susceptible to oxidant attack, can lead to initiation of lipid peroxidation and in turn rapid production of toxic lipid hydroperoxides. Eukaryotic microorganisms such as Saccharomyces cerevisiae can survive harsh industrial conditions that contain high levels of the PUFA linoleic acid and its oxidised derivative, linoleic acid hydroperoxide (LoaOOH). The precise signalling and response mechanisms induced by yeast to overcome lipid hydroperoxide stress are ill understood.

Publication Title

Transcriptomic insights into the molecular response of Saccharomyces cerevisiae to linoleic acid hydroperoxide.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP035482
MARIS: Method for Analyzing RNA following Intracellular Sorting [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We''ve developed a new Method to Analyze RNA following Intracellular Sorting (MARIS) allowing us to carry out gene expression studies on cells sorted based on intracellular immunoflourescence. The purpose of this study is to determine the degree of bias that MARIS introduces on gene expression. We report RNA-seq gene expression data from human embryonic stem cells differentiated to a stage in which insulin-expressing cells are present. Gene expression data using RNA isolated from live cells is compared to gene expression data using RNA isolated from MARIS processed cells (fixed, permeabilized, antibody stained and mock sorted) to determine the degree of correlation in gene expression between these two biologically identical samples. Overall design: Human embryonic stem cells are differentiated to a stage in which insulin-expressing cells are present and split into two biologically identical samples. RNA is immediately isolated from one sample using the RNeasy protocol (live sample). RNA is isolated from the second sample following MARIS (processed sample) with all cells collected after the sort in order to keep the cell type composition between the live and processed samples the same.

Publication Title

MARIS: method for analyzing RNA following intracellular sorting.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE154612
Transcriptomic signature of fasting in adipose tissue
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 38 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Transcriptomic signature of fasting in human adipose tissue.

Sample Metadata Fields

Age, Specimen part, Subject

View Samples
accession-icon GSE154611
Transcriptomic signature of fasting in murine adipose tissue
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.1 ST Array (mogene21st)

Description

Little is known about the impact of fasting on gene regulation in human adipose tissue. Accordingly, the objective of this study was to investigate the effects of fasting on adipose tissue gene expression in humans. To that end, subcutaneous adipose tissue biopsies were collected from volunteers 2h and 26h after consumption of a standardized meal. For comparison, epididymal adipose tissue was collected from C57Bl/6J mice after a 16h fast and in the ab-libitum fed state. Transcriptome analysis was carried out using Affymetrix microarrays. We found that, 1) fasting downregulated numerous metabolic pathways in human adipose tissue, including triglyceride and fatty acid synthesis, glycolysis and glycogen synthesis, TCA cycle, oxidative phosphorylation, mitochondrial translation, and insulin signaling; 2) fasting downregulated genes involved in proteasomal degradation in human adipose tissue; 3) fasting had much less pronounced effects on the adipose tissue transcriptome in humans than mi ce; 4) although major overlap in fasting-induced gene regulation was observed between human and mouse adipose tissue, many genes were differentially regulated in the two species, including genes involved in insulin signaling (PRKAG2, PFKFB3), PPAR signaling (PPARG, ACSL1, HMGCS2, SLC22A5, ACOT1), glycogen metabolism (PCK1, PYGB), and lipid droplets (PLIN1, PNPLA2, CIDEA, CIDEC). In conclusion, although numerous genes and pathways are regulated similarly by fasting in human and mouse adipose tissue, many genes show very distinct responses to fasting in humans and mice. Our data provide a useful resource to study adipose tissue function during fasting.

Publication Title

Transcriptomic signature of fasting in human adipose tissue.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE8928
Regulation of mRNA expression of monocytic cells by stimulation with pro- abd anti-inflammatory eicosanoids
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Eicosanoids are potent regulators of gene expression of inflammatory cells. Pro- (leukotrienes B4 and C4) and anti-indflammatory (lipoxins A4 and B4) eicosanoids have been described in the literature but the detailed impact of these lipid mediators on the gene expression pattern of monocytic cells has not been studied in detail. We cultured the permanent monocytic cell line MonoMac 6 for 12 h in the absence (solvent control) and presence of these eicosanoids and quantified the differential gene expression patterns using the microarray technology.

Publication Title

Gene expression alterations of human peripheral blood monocytes induced by medium-term treatment with the TH2-cytokines interleukin-4 and -13.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE55187
Partial phenotypic rescue of the Sesb1 mitochondrial ANT1 disease model in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Study of gene expression patterns of Drosophila melanogaster Sesb1 mutants compared to wild type

Publication Title

Phenotypic rescue of a Drosophila model of mitochondrial ANT1 disease.

Sample Metadata Fields

Sex

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact