refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 33 results
Sort by

Filters

Technology

Platform

accession-icon GSE44065
KRAB/KAP1-microRNA cascade regulates erythropoiesis through the stage-specific control of mitophagy
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE44063
KRAB/KAP1-microRNA cascade regulates erythropoiesis through the stage-specific control of mitophagy [array]
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

A multilayered transcription regulatory system is unveiled, where protein- and RNA-based repressors are super-imposed in combinatorial fashion to govern the timely triggering of an essential step of erythropoiesis

Publication Title

A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP084282
Kap1 in liver physiology
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Hepatocellular carcinoma (HCC) represents the fifth most common form of cancer worldwide and carries a high mortality rate due to lack of effective treatment. Males are eight times more likely to develop HCC that females, an effect largely driven by sex hormones, albeit through still poorly understood mechanisms. We previously identified TRIM28, a scaffold protein capable of recruiting a number of chromatin modifiers, as a crucial mediator of sexual dimorphism in the liver, with Trim28hep-/- mice displaying sex-specific transcriptional deregulation of a wide range of bile and steroid metabolism genes and development of liver adenomas in males. We now demonstrate that obesity and ageing precipitate alterations of TRIM28-dependent transcriptional dynamics, leading to a metabolic infection state responsible for highly penetrant male-restricted hepatic carcinogenesis. Molecular analyses implicate aberrant androgen receptor stimulation, biliary acid disturbances and altered responses to gut microbiota in the pathogenesis of Trim28hep-/--associated HCC. Correspondingly, androgen deprivation markedly attenuates the frequency and severity of tumors, and raising animals under axenic conditions completely abrogates their abnormal phenotype, even upon high-fat diet challenge. This work underpins how discrete polyphenic traits in epigenetically unstable conditions can contribute to a cancer-prone state, and more broadly provides new evidence linking hormonal imbalances, metabolic disturbances, gut microbiota and cancer. Overall design: Transcriptome profiling of liver tissues from TgAlbCre or TgAlbCreKap1lox mice in HFD settings

Publication Title

Polyphenic trait promotes liver cancer in a model of epigenetic instability in mice.

Sample Metadata Fields

Specimen part, Subject, Time

View Samples
accession-icon SRP007650
RNA-seq and expression profile of WT and ZFP57 KO ES cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

RNA-seq and expression profile of WT and ZFP57 KO ES cells Overall design: RNA was extracted from both cell lines, PolyA RNA were extracted and RNA-seq was performed

Publication Title

In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE38580
KAP1 regulates gene networks controlling T cell development and activation
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

KAP1 regulates gene networks controlling T-cell development and responsiveness.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34447
Gene expression analysis of wild type and KAP1 KO mouse T cell progenitors
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

The modulation of chromatin status at specific genomic loci controls lymphoid differentiation. Here, we investigated the role played in this process by KAP1, the universal cofactor of KRAB-containing Zinc Finger Proteins (KRAB-ZFPs), a tetrapod-restricted family of transcriptional repressors. T cell-specific Kap1 knockout mice displayed a significant expansion of immature thymocytes and imbalances in the ratios of mature T cells in the thymus and the spleen, with impaired responses to TCR stimulation. Transcriptome and chromatin studies revealed that KAP1 directly controls the expression of a number of genes involved in TCR and cytokine signalling, among which Traf1 and FoxO1, and is strongly associated with cis-acting regulatory elements marked by the H3K9me3 repressive mark on the genome of thymic T cells. Likely responsible for tethering KAP1 to at least part of its genomic targets, a small number of KRAB/ZFPs are selectively expressed in T lymphoid cells. These results reveal the so far unsuspected yet important role of KRAB/KAP1-mediated epigenetic regulation in T lymphocyte differentiation and activation.

Publication Title

KAP1 regulates gene networks controlling T-cell development and responsiveness.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE36880
KAP1 regulates gene networks controlling B lymphoid cell differentiation and function
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

KAP1 regulates gene networks controlling mouse B-lymphoid cell differentiation and function.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE34446
Gene expression analysis of wild type and KAP1 KO splenic B cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Chromatin remodeling is fundamental for B cell differentiation. Here, we explored the role in this process of KAP1, the cofactor of KRAB-ZFP transcriptional repressors. B lymphoid-specific Kap1 knockout mice displayed reduced numbers of mature B cells, lower steady-state levels of antibodies and accelerated rates of decay of neutralizing antibodies following viral immunization. Transcriptome analyses of Kap1-deleted B splenocytes revealed an upregulation of PTEN, the enzymatic counter-actor of PIK3 signaling, and of genes encoding DNA damage response factors, cell-cycle regulators and chemokine receptors. ChIP/seq studies established that KAP1 bound at or close to a number of these genes, and controlled chromatin status at their promoters. Genome-wide, KAP1-binding sites avoided active B cell-specific enhancers and were enriched in repressive histone marks, further supporting a role for this molecule in gene silencing in vivo. Likely responsible for tethering KAP1 to at least some of these targets, a discrete subset of KRAB-ZFPs is enriched in B lymphocytes. This work thus reveals the role of KRAB/KAP1-mediated epigenetic regulation in B cell development and homeostasis.

Publication Title

KAP1 regulates gene networks controlling mouse B-lymphoid cell differentiation and function.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE93261
Transcriptome analysis of Follicular Lymphomas from the PRIMABIO cohort
  • organism-icon Homo sapiens
  • sample-icon 124 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We investigated the biological features of FL and their relationship to patients outcome. Gene expression analysis was carried out on diagnosis biopsies from 148 follicular lymphoma patients enrolled in the PRIMA clinical trial. We developed a gene expression-based predictor of progression-free survival (PFS) in high-tumour burden FL patients and we analysed gene-expression signatures reflecting different aspects of tumour biology for their association with outcome. proposition SH: We investigated the biological features of FL and their relationship to patients outcome. Gene expression analysis was carried out on diagnosis biopsies from 148 follicular lymphoma patients enrolled in the PRIMA clinical trial. We developed a gene expression-based predictor of progression-free survival (PFS) in high-tumour burden FL patients and we analysed gene-expression signatures reflecting different aspects of tumour biology for their association with outcome.

Publication Title

A gene-expression profiling score for prediction of outcome in patients with follicular lymphoma: a retrospective training and validation analysis in three international cohorts.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE36778
Effect of Tgfbr2 disruption on gene expression in the aorta of Fbn1 wild-type and Fbn1C1039G mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used microarrays to characterize the global changes in gene expression within the ascending aorta of mice due to conditional disruption of TGF- signaling in smooth muscle and/or due to heterozygous fibrillin-1 mutation.

Publication Title

Tgfbr2 disruption in postnatal smooth muscle impairs aortic wall homeostasis.

Sample Metadata Fields

Age, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact