refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE42937
Stem cell factor Sox2 regulates the tumorigenic potential in human gastric cancer cells
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Gastric cancer is still one of the most common causes of cancer-related death worldwide, which is mainly attributable to late diagnosis and poor treatment options. Infection with H. pylori, different environmental factors and genetic alterations are known to influence the risk of developing gastric tumors. However, the molecular mechanisms involved in gastric carcinogenesis are still not fully understood, making it difficult to design targeted therapeutic approaches.

Publication Title

The stem cell factor SOX2 regulates the tumorigenic potential in human gastric cancer cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Time

View Samples
accession-icon GSE94923
NR4A orphan nuclear receptor family members, NR4A2 and NR4A3, regulate neutrophil number and survival
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Defects in neutrophil number and survival are common to both hematologic disorders and chronic inflammatory diseases. At sites of inflammation, neutrophils respond to multiple signals that activate protein kinase A (PKA) signalling, which positively regulates neutrophil survival. We aimed to study the transcriptional responses to several stimuli in human neutrophils.

Publication Title

NR4A orphan nuclear receptor family members, NR4A2 and NR4A3, regulate neutrophil number and survival.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE21837
Expression data from unactivated vs. activated PBMCs
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Long-lasting activation of T cells requires up-regulation of many genes, for example of transcription factors, cytoskeletal proteins and cell surface proteins encluding ion channels. An increase of ion channel density at the cell surface reflects the needs to manage increased Ca2+ influx into the activated T cell. Using oligonucleotide-based arrays we have surveyed changes in ion channel mRNA expression that occur upon T cell activation. We used Affymetrix Analysis to confirmate our data achieved by self-designed glass array analysis.

Publication Title

A truncation variant of the cation channel P2RX5 is upregulated during T cell activation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE60499
Expression data from PKM1 or PKM2 expressing mouse embryonic fibroblasts.
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We profiled global gene expression for two separate lines of mouse embryonic fibroblasts and find that deletion of PKM2 and expression of PKM1 does not alter global gene expression profiles.

Publication Title

Pyruvate kinase isoform expression alters nucleotide synthesis to impact cell proliferation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP101569
Length-independent telomere damage drives cardiomyocyte senescence
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Ageing is the biggest risk factor to cardiovascular health and is associated with increased incidence of cardiovascular disease. Cellular senescence, a process driven in part by telomere shortening has been implicated in age-related cardiac dysfunction. However, the role of cellular senescence and its underlying mechanisms in slowly dividing/post-mitotic cardiomyocytes is not understood. Overall design: We quantify transcription via high throughput RNA sequencing in young (3 months) and old (20 months) mouse cardiomyocytes.

Publication Title

Length-independent telomere damage drives post-mitotic cardiomyocyte senescence.

Sample Metadata Fields

Age, Cell line, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact