refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 54 results
Sort by

Filters

Technology

Platform

accession-icon GSE138482
Effect of DMHF (2,5-dimethyl-4-hydroxy-3(2H)-furanone) inhalation on gene expression in Rat brain
  • organism-icon Rattus norvegicus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Background: 2,5-Dimethyl-4-hydroxy-3(2H)-furanone (DMHF) is one of the major odor compounds generated by the Maillard reaction. We previously reported that the inhalation of DMHF decreased systolic blood pressure via the autonomic nervous system in rats. The autonomic nervous system is also closely related to appetite regulation. The present study investigated the effects of DMHF on dietary intake and gene expression.

Publication Title

DMHF (2,5-dimethyl-4-hydroxy-3(2H)-furanone), a volatile food component generated by the Maillard reaction, promotes appetite and changes gene expression in the rat brain through inhalation.

Sample Metadata Fields

Sex, Age, Specimen part, Treatment

View Samples
accession-icon GSE67905
Expression data in HeLa cells treated with CENP-E siRNA or Eg5 siRNA in the presence of BubR1 siRNA
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The molecular mechanism responsible for cell fate after mitotic slippage is unclear. We investigate the postmitotic effects of different mitotic aberrations, misaligned chromosomes produced by CENP-E siRNA (siCENP-E), and monopolar spindles resulting from Eg5 siRNA (siEg5).

Publication Title

Expression data of HeLa cells treated with CENP-E siRNA or Eg5 siRNA in the presence of BubR1 siRNA.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE20586
Expression data from Arabidopsis suspension cells overexpressing VND6 and SND1
  • organism-icon Arabidopsis thaliana
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Xylem consists of three types of cells: vessel cells, also referred to as tracheary elements (TEs), parenchyma cells, and fiber cells. TE differentiation includes two essential processes, programmed cell death (PCD) and secondary cell wall formation. These two processes are tightly coupled. However, little is known about the molecular mechanism of their gene regulation. Here, we show that VASCULAR-RELATED NAC-DOMAIN 6 (VND6), a master regulator of TEs, regulates these processes in a coordinated manner. We first identified specific genes downstream of VND6 by comparing them with those of SECONDARY WALL-ASSOCIATES NAC DOMAIN PROTEIN1 (SND1), a master regulator of xylem fiber cells, with transformed suspension culture cells in microarray experiments.

Publication Title

Arabidopsis VASCULAR-RELATED NAC-DOMAIN6 directly regulates the genes that govern programmed cell death and secondary wall formation during xylem differentiation.

Sample Metadata Fields

Time

View Samples
accession-icon GSE93595
Acquired resistance with epigenetic alterations under long-term anti-angiogenic therapy for hepatocellular carcinoma
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Anti-angiogenic therapy is initially effective for several solid tumors including hepatocellular carcinoma (HCC); however, they finally relapse and progress, resulting in poor prognosis. We here established in vivo drug-tolerant subclones of human HCC cells by long-term treatment with vascular endothelial growth factor receptor (VEGFR) inhibitor and serial transplantation in immunocompromised mice (total 12 months), and then compared them with the parental cells in molecular and biological features. Gene expression profiles elucidated a G-actin monomer binding protein thymosin 4 (T4) as one of the genes enriched in the resistant cancer cells relative to the initially sensitive ones. Highlighting epigenetic alterations involved in drug resistance, we revealed that T4 could be aberrantly expressed following demethylation of DNA and active modification of histone H3 at the promoter region. Ectopic overexpression of T4 in HCC cells could significantly enhance sphere-forming capacities and infiltrating phenotypes in vitro, and promote growth of tumors refractory to the VEGFR mutltikinase inhibitor sorafenib in vivo. Clinically, sorafenib failed to improve the progression-free survival in patients with T4-high HCC, indicating that T4 expression could be available as a surrogate marker of susceptibility to this drug. This study suggests that T4 expression triggered by epigenetic alterations could contribute to the development of resistance to anti-angiogenic therapy by the acquisition of stemness, and that epigenetic control might be one of the key targets to regulate the resistance in HCC.

Publication Title

Acquired Resistance with Epigenetic Alterations Under Long-Term Antiangiogenic Therapy for Hepatocellular Carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE57860
Expression data from Arabidopsis suspension cells overexpressing LHW and T5L1-GFP
  • organism-icon Arabidopsis thaliana
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.0 ST Array (aragene10st)

Description

Plant vascular tissues are essential for the existence of land plants. Many studies have revealed the process underlying the development of vascular tissues. However, the initiation of vascular development is still a mystery. LONESOME HIGHWAY (LHW), which encodes a bHLH transcription factor, is expressed in the initial step of vascular development in roots. LHW and TMO5 LIKE1 (T5L1) interact each other and function as a heterodimer. Here, we identified specific genes downstream of LHW-T5L1 with transformed suspension culture cells in microarray experiments.

Publication Title

A bHLH complex activates vascular cell division via cytokinin action in root apical meristem.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon DRP003800
Post-transcriptional regulation of Clock instructs the emergence of robust circadian clock oscillation during mouse development
  • organism-icon Mus musculus
  • sample-icon 72 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Circadian clock oscillation emerges in mouse embryo in the later developmental stages. Although circadian clock development is closely correlated with cellular differentiation, the mechanisms of its emergence during mammalian development are not well understood. Here, we demonstrate an essential role of the post-transcriptional regulation of Clock subsequent to the cellular differentiation for the emergence of robust circadian clock oscillation in mouse fetal hearts and mESCs (mouse embryonic stem cells). In mouse fetal hearts, no apparent oscillation of cell-autonomous molecular clock was detectable in around embryonic day (E) 10 whereas robust oscillation was clearly visible in E18 heart. Temporal RNA-seq analysis using mouse fetal hearts reveals much fewer rhythmic genes in E10-12 hearts (63, no clock genes) than E17-19 (483 genes), indicating the lack of functional circadian clocks in E10 mouse fetal hearts. In both mESCs and E10 embryos, CLOCK protein was absent despite the expression of Clock mRNA, which we showed was at least partially due to miRNA-mediated translational suppression of CLOCK. The CLOCK protein is required for the robust molecular oscillation in differentiated cells, and the post-transcriptional regulation of Clock plays a key role in setting the timing for the emergence of the circadian clock oscillation during mammalian development.

Publication Title

Involvement of posttranscriptional regulation of <i>Clock</i> in the emergence of circadian clock oscillation during mouse development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE63332
Hydroxypropyl--cyclodextrin spikes local inflammation that induces Th2 and Tfh responses to the coadministered antigen
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Gene expression data from mouse organs after hydroxypropyl--cyclodextrin injection

Publication Title

Hydroxypropyl-β-cyclodextrin spikes local inflammation that induces Th2 cell and T follicular helper cell responses to the coadministered antigen.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE18990
Proteomic analysis of native hepatocyte nuclear factor-4{alpha} (HNF4{alpha}) isoforms, phosphorylation status, and interactive cofactors.
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hepatocyte nuclear factor-4 (HNF4, NR2A1) is a nuclear receptor which has a critical role in hepatocyte differentiation and the maintenance of homeostasis in the adult liver. However, a detailed understanding of native HNF4 in the steady state remains to be elucidated. Here we report the native HNF4 isoforms, phosphorylation status and complexes in the steady state, as shown by shotgun proteomics in HepG2 hepatocarcinoma cells. Shotgun proteomic analysis revealed the complexity of native HNF4, including multiple phosphorylation sites and inter-isoform heterodimerization. The associating complexes identified by label-free semi-quantitative proteomic analysis include the following: the DNA-dependent protein kinase catalytic subunit, histone acetyltransferase complexes, mRNA splicing complex, other nuclear receptor coactivator complexes, the chromatin remodeling complex, and the nucleosome remodeling and histone deacetylation complex. Among the associating proteins, GRB10 interacting GYF protein 2 (GIGYF2, PERQ2) is a new candidate cofactor in metabolic regulation. Moreover, an unexpected heterodimerization of HNF4 and Hepatocyte nuclear factor-4 was found. A biochemical and genome-wide analysis of transcriptional regulation showed that this heterodimerization activates gene transcription. The genes thus transcribed include the cell death-inducing DEF45-like effector b (CIDEB) gene, which is an important regulator of lipid metabolism in the liver. This suggests that the analysis of the distinctive stoichiometric balance of native HNF4 and its cofactor complexes described here is important for an accurate understanding of transcriptional regulation.

Publication Title

Proteomic analysis of native hepatocyte nuclear factor-4α (HNF4α) isoforms, phosphorylation status, and interactive cofactors.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE18973
Global expression analysis of HNF4alpha and HNFgamma-mediated transcriptional control
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Hepatocyte nuclear factor-4 (HNF4, NR2A1) is a nuclear receptor which has a critical role in hepatocyte differentiation and the maintenance of homeostasis in the adult liver. However, a detailed understanding of native HNF4 in the steady state remains to be elucidated. Here we report the native HNF4 isoforms, phosphorylation status and complexes in the steady state, as shown by shotgun proteomics in HepG2 hepatocarcinoma cells. Shotgun proteomic analysis revealed the complexity of native HNF4, including multiple phosphorylation sites and inter-isoform heterodimerization. The associating complexes identified by label-free semi-quantitative proteomic analysis include the following: the DNA-dependent protein kinase catalytic subunit, histone acetyltransferase complexes, mRNA splicing complex, other nuclear receptor coactivator complexes, the chromatin remodeling complex, and the nucleosome remodeling and histone deacetylation complex. Among the associating proteins, GRB10 interacting GYF protein 2 (GIGYF2, PERQ2) is a new candidate cofactor in metabolic regulation. Moreover, an unexpected heterodimerization of HNF4 and Hepatocyte nuclear factor-4 was found. A biochemical and genome-wide analysis of transcriptional regulation showed that this heterodimerization activates gene transcription. The genes thus transcribed include the cell death-inducing DEF45-like effector b (CIDEB) gene, which is an important regulator of lipid metabolism in the liver. This suggests that the analysis of the distinctive stoichiometric balance of native HNF4 and its cofactor complexes described here is important for an accurate understanding of transcriptional regulation.

Publication Title

Proteomic analysis of native hepatocyte nuclear factor-4α (HNF4α) isoforms, phosphorylation status, and interactive cofactors.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE17351
Expression data from esophageal squamous cell carcinoma (ESCC)
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used microarrays to determine global gene expression in primary tumor tissues (ESCC) and matched normal tissues (adjacent normal esophageal mucosa)

Publication Title

Hypoxia activates the cyclooxygenase-2-prostaglandin E synthase axis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact