refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 5 of 5 results
Sort by

Filters

Technology

Platform

accession-icon GSE14054
Analysis of Ago2-associated transcripts after knockdown of Importin8
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Small regulatory RNAs including small interfering RNAs (siRNAs) and microRNAs (miRNAs) guide Argonaute (Ago) proteins to specific target RNAs leading to mRNA destabilization or translational repression. We recently reported the identification of Importin 8 (Imp8) as a novel component of miRNA-guided regulatory pathways. Imp8 interacts with Ago proteins and localizes to cytoplasmic processing bodies (P-bodies), structures involved in RNA metabolism. For this micro-array dataset, we used immunoprecipitations of Ago2-associated mRNAs followed by micro-array analysis. The results demonstrate that Imp8 is required for recruiting Ago protein complexes to a large set of Ago2-associated target mRNAs allowing for efficient and specific gene silencing. Therefore, we provide evidence that Imp8 is required for cytoplasmic miRNA-guided gene silencing.

Publication Title

Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE9408
Identification of putative Arabidopsis DEMETER target genes by GeneChip Analysis
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

We used Affymetrix Arabidopsis ATH1 GeneChip to profile RNAs active in wild type columbia (glabrous) and CaMV::DME pollen and stamens.

Publication Title

Identification of putative Arabidopsis DEMETER target genes by GeneChip analysis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE78150
Effect of Human Genetic Variability on Gene Expression in Dorsal Root Ganglia and Association with Pain Phenotypes
  • organism-icon Homo sapiens
  • sample-icon 422 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Effect of Human Genetic Variability on Gene Expression in Dorsal Root Ganglia and Association with Pain Phenotypes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE78148
Effect of human genetic variability on gene transcription in dorsal root ganglia and association with pain phenotypes [exon-level]
  • organism-icon Homo sapiens
  • sample-icon 209 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Single nucleotide polymorphisms (SNP) can affect mRNA gene expression, in a tissue-specific manner. In this work we survey association of SNP alleles with mRNA gene expression in human dorsal root ganglions (DRG) to gain insights into pathophysiology of pain phenotypes.

Publication Title

Effect of Human Genetic Variability on Gene Expression in Dorsal Root Ganglia and Association with Pain Phenotypes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE77968
Effect of human genetic variability on gene transcription in dorsal root ganglia and association with pain phenotypes [transcript-level]
  • organism-icon Homo sapiens
  • sample-icon 116 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

Single nucleotide polymorphisms (SNP) can affect mRNA gene expression, in a tissue-specific manner. In this work we survey association of SNP alleles with mRNA gene expression in human dorsal root ganglions (DRG) to gain insights into pathophysiology of pain phenotypes.

Publication Title

Effect of Human Genetic Variability on Gene Expression in Dorsal Root Ganglia and Association with Pain Phenotypes.

Sample Metadata Fields

Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact