refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 200 results
Sort by

Filters

Technology

Platform

accession-icon GSE20591
Expression data of -subunit of Snf1 kinase in yeast Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The conserved Snf1/AMPK (AMP-activated protein Kinase) family is one of the central components in nutrient sensing and regulation of carbon metabolism in eukaryotes. It is also involved in several other processes such as stress resistance, invasive growth and ageing. Snf1 kinase is composed of a catalytic -subunit Snf1, a regulatory -subunit Snf4 and one of three possible -subunits, Sip1, Sip2 or Gal83. We used a systematic approach to study the role of the three -subunits by analyzing all 7 possible combinations of -subunit deletions together with the reference strain.

Publication Title

The beta-subunits of the Snf1 kinase in Saccharomyces cerevisiae, Gal83 and Sip2, but not Sip1, are redundant in glucose derepression and regulation of sterol biosynthesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43179
MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP)
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP).

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43177
MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP) [mRNA]
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

MicroRNA are small non-coding RNA molecules that regulate gene expression. To investigate the role of microRNA in ITP, we performed genome-wide expression analyses of mRNA and microRNA in T-cells from ITP patients and controls. We identified 1,915 regulated genes and 22 regulated microRNA that differed between ITP patients and controls. Seventeen of the 22 regulated microRNA were linked to changes in target gene expression; 57 of these target genes were associated with the immune system, e.g. T-cell activation and regulation of immunoglobulin production. CXCL13 and IL-21 were two microRNA target genes significantly increased in ITP. We could demonstrate increased plasma levels of CXCL13 and others have reported increased plasma levels of IL-21 in ITP. Thus, regulated microRNA were significantly associated with both gene and protein expression of molecules in immunological pathways. We suggest that microRNA may be important regulatory molecules involved in the loss of tolerance in ITP.

Publication Title

MicroRNA regulate immunological pathways in T-cells in immune thrombocytopenia (ITP).

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE50182
Saccharomyces cerevisiae stress responses to HMF and furfural (xylose and glucose) Oct
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

HMF and furfural were pulse added to xylose-utilizing Saccharomyces cerevisiae during either the glucose consumption phase or the xylose consumption phase. Transcriptome samples were collected before and one hour after pulsing of inhibitors.

Publication Title

Pulsed addition of HMF and furfural to batch-grown xylose-utilizing Saccharomyces cerevisiae results in different physiological responses in glucose and xylose consumption phase.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE83896
Small molecules increase direct neural conversion of human fibroblasts
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Time course micro array experiment to identify transcriptional changes in response to exposure of hFLs to different combinations of small molecules during direct neuronal reprogramming

Publication Title

Small molecules increase direct neural conversion of human fibroblasts.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE30848
Muscle wasting and the temporal gene expresion pattern in a novel rat ICU model
  • organism-icon Rattus norvegicus
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Acute quadriplegic myopathy (AQM) or critical illness myopathy (CIM) is frequently observed in intensive care unit (ICU) patients. In order to elucidate duration-dependent effects of the ICU intervention on molecular and functional networks that control the muscle wasting and weakness in AQM, gene expression profile was analyzed at time points varying from 6 hours to 14 days in a unique experimental rat model mimicking ICU conditions, i.e., post-synaptically paralyzed, mechanically ventilated and extensively monitored animals.

Publication Title

Muscle wasting and the temporal gene expression pattern in a novel rat intensive care unit model.

Sample Metadata Fields

Sex, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE6277
Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

When the yeast Saccharomyces cerevisiae is subjected to increasing glycolytic fluxes under aerobic conditions, there is a threshold value of the glucose uptake rate at which the metabolism shifts from being purely respiratory to mixed respiratory and fermentative. This shift is characterized by ethanol production, a phenomenon known as the Crabtree effect due to its analogy with lactate overflow in cancer cells. It is well known that at high glycolytic fluxes there is glucose repression of respiratory pathways resulting in a decrease in the respiratory capacity. Despite many years of detailed studies on this subject, it is not known whether the onset of the Crabtree effect (or overflow metabolism) is due to a limited respiratory capacity or caused by glucose-mediated repression of respiration. We addressed this issue by increasing respiration in S. cerevisiae by introducing a heterologous alternative oxidase, and observed reduced aerobic ethanol formation. In contrast, increasing non-respiratory NADH oxidation by overexpression of a water-forming NADH oxidase reduced aerobic glycerol formation. The metabolic response to elevated alternative oxidase occurred predominantly in the mitochondria, while NADH oxidase affected genes that catalyze cytosolic reactions. Moreover, NADH oxidase restored the deficiency of cytosolic NADH dehydrogenases in S. cerevisiae. These results indicate that NADH oxidase localizes in the cytosol, while alternative oxidase is directed to the mitochondria. The onset of aerobic ethanol formation is demonstrated to be a consequence of an imbalance in mitochondrial redox balancing. In addition to answering fundamental physiological questions, our findings are relevant for all biomass derived applications of S. cerevisiae.

Publication Title

Increasing NADH oxidation reduces overflow metabolism in Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP059850
Using single-cell RNA-Seq for unbiased analysis of developmental hierarchies (single cell RNA Seq of GMP)
  • organism-icon Mus musculus
  • sample-icon 123 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Single cell RNA seq and bioinformatic analysis is used to characterize myeloid differentiation to uncover novel transcriptional networks and key drivers of hematoipoietic development Overall design: Single cell RNA seq of different hematopoietic populations integrated with Chip seq involving multiple markers

Publication Title

Single-cell analysis of mixed-lineage states leading to a binary cell fate choice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP059903
Using single-cell RNA-Seq for unbiased analysis of developmental hierarchies (single cell RNA Seq from CMP)
  • organism-icon Mus musculus
  • sample-icon 85 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500

Description

Single cell RNA seq and bioinformatic analysis is used to characterize myeloid differentiation to uncover novel transcriptional networks and key drivers of hematoipoietic development Overall design: Single cell RNA seq of different hematopoietic populations integrated with Chip seq involving multiple markers

Publication Title

Single-cell analysis of mixed-lineage states leading to a binary cell fate choice.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP059844
Using single-cell RNA-Seq for unbiased analysis of developmental hierarchies (single cell RNA Seq of bone marrow lineage-negative Sca1+ CD117+ cells)
  • organism-icon Mus musculus
  • sample-icon 88 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Single cell RNA seq and bioinformatic analysis is used to characterize myeloid differentiation to uncover novel transcriptional networks and key drivers of hematoipoietic development Overall design: Single cell RNA seq of different hematopoietic populations integrated with Chip seq involving multiple markers

Publication Title

Single-cell analysis of mixed-lineage states leading to a binary cell fate choice.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact