refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 13 results
Sort by

Filters

Technology

Platform

accession-icon GSE9691
Analysis of the effects of loss of E-cadherin and cell adhesion on human mammary epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

Loss of the epithelial adhesion molecule E-cadherin is thought to enable metastasis by disrupting intercellular contacts - an early step in metastatic dissemination. To further investigate the molecular basis of this notion, we use two methods to inhibit E-cadherin function that distinguish between E-cadherin's cell-cell adhesion and intracellular signaling functions. While the disruption of cell-cell contacts alone does not enable metastasis, the loss of E-cadherin protein does, through induction of an epithelial-to-mesenchymal transition, invasiveness and anoikis-resistance. We find the E-cadherin binding partner beta-catenin to be necessary but not sufficient for induction of these phenotypes. In addition, gene expression analysis shows that E-cadherin loss results in the induction of multiple transcription factors, at least one of which, Twist, is necessary for E-cadherin loss-induced metastasis. These findings indicate that E-cadherin loss in tumors contributes to metastatic dissemination by inducing wide-ranging transcriptional and functional changes.

Publication Title

Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE17215
Expression data from paclitaxel and salinomycin-treated HMLER breast cancer cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

Screens for agents that specifically kill epithelial cancer stem cells (CSCs) have not been possible due to the rarity of these cells within tumor cell populations and their relative instability in culture. We describe here an approach to screening for agents with epithelial CSC-specific toxicity. We implemented this method in a chemical screen and discovered compounds showing selective toxicity for breast CSCs. One compound, salinomycin, reduces the proportion of CSCs by >100-fold relative to paclitaxel, a commonly used breast cancer chemotherapeutic drug. Treatment of mice with salinomycin inhibits mammary tumor growth in vivo and induces increased epithelial differentiation of tumor cells. In addition, global gene expression analyses show that salinomycin treatment results in the loss of expression of breast CSC genes previously identified by analyses of breast tissues isolated directly from patients. This study demonstrates the ability to identify agents with specific toxicity for epithelial CSCs

Publication Title

Identification of selective inhibitors of cancer stem cells by high-throughput screening.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29253
Gene expression changes upon Dot1L knockdown and Dot1L inhibitor treatment during reprogramming
  • organism-icon Homo sapiens
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Through a loss-of-function approach, we identified that inhibition of the histone methyltransferase, Dot1L, accelerated somatic cell reprogramming, significantly increased the yield of induced pluripotent stem (iPS) cell colonies, and substituted for Klf4 and c-Myc in the reprogramming cocktail. To understand the mechanism by which Dot1L inhibition results in these phenotypes, we carried out gene expression profiling using Affymetrix microarrays.

Publication Title

Chromatin-modifying enzymes as modulators of reprogramming.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP074343
Silencing of KDM2B leads to deregulation of apoptosis related genes in GBM
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) is a promising anti-cancer protein that can specifically kill tumor cells while sparing healthy ones. Emerging evidences suggest that TRAIL resistance in cancers is associated with aberrant expression of the key components of the apoptotic program. However, how these components are regulated at the epigenetic level is not understood. In this study, we aimed to identify novel epigenetic mechanisms regulating TRAIL response in Glioblastoma Multiforme (GBM) by a short-hairpin RNA (shRNA) screen. We employed an shRNA-mediated loss of function approach to interrogate the role of 48 genes in DNA and histone modification pathways. From this we identified KDM2B, an H3K36-specific demethylase, as a novel regulator of TRAIL response. Accordingly, silencing of KDM2B significantly enhanced TRAIL sensitivity, the activation of Caspase-8, Caspase-3, Caspase-7, and cleavage of PARP. KDM2B knockdown also accelerated the apoptosis process, as revealed by live cell imaging experiments. Moreover, simultaneous knockdown of the methyltransferases responsible for generating the histone marks removed by KDM2B significantly recovered the cell death phenotype observed with KDM2B inhibition. To decipher the downstream molecular pathways regulated by KDM2B, levels of apoptosis-related genes were examined by RNA-sequencing and quantitative PCR upon KDM2B loss, which revealed de-repression of pro-apoptotic genes HRK, caspase-7, and DR4 and repression of anti-apoptotic gene Mcl-1. The apoptosis phenotype was dependent on HRK upregulation, as HRK knockdown significantly abrogated the sensitization. In vivo, KDM2B-silenced tumors exhibited slower growth and reduced angiogenic capacity compared to controls. Taken together, our findings suggest a novel mechanism regulating apoptotic response, where the key apoptosis components are under epigenetic control of KDM2B in GBM cells. Overall design: mRNA profiles of U87MG GBM cells transduced either by control shRNA or shRNA targeting KDM2B were generated by RNA-seq (Illumina HiSeq 2500). 2 biological replicates of shControl and shKDM2B total RNAs were barcoded individually and deep sequenced as 3 technical replicates each in 3 lanes.

Publication Title

KDM2B, an H3K36-specific demethylase, regulates apoptotic response of GBM cells to TRAIL.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE24182
Large intergenic non-coding RNAs as novel modulators of reprogramming
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE24202
Expression data from genetically modified HMLE human mammary epithelial cells
  • organism-icon Homo sapiens
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix HT Human Genome U133A Array (hthgu133a)

Description

Microarrays were used to determine relative global gene expression changes upon introduction of EMT-inducing or control vectors.

Publication Title

Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23968
Large intergenic non-coding RNAs as novel modulators of reprogramming: ESCs, fibroblast, and fibroblast-derived iPSC (gene expression)
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Gene expression profiles of human embryonic stem cells, fibroblasts, and fibroblast-derived induced pluripotent stem cells

Publication Title

Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23973
Large intergenic non-coding RNAs as novel modulators of reprogramming: siRNA (gene expression)
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

lincRNA-ST8SIA3 was depleted using siRNAs and associated gene expression changes were profiled on Affymentrix arrays

Publication Title

Large intergenic non-coding RNA-RoR modulates reprogramming of human induced pluripotent stem cells.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE43231
Combinatorial role of Jmjd2b and Jmjd2c in mESC identity
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Distinct and combinatorial functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in mouse embryonic stem cell identity.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE43059
Role of Jmjd2b and Jmjd2c in mESCs identity
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We used microarray to determine the changes in gene expression profile after KD of Jmjd2b and Jmjd2c compared to Anti-GFP KD from mES cells

Publication Title

Distinct and combinatorial functions of Jmjd2b/Kdm4b and Jmjd2c/Kdm4c in mouse embryonic stem cell identity.

Sample Metadata Fields

Sex, Specimen part

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact