refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 52 results
Sort by

Filters

Technology

Platform

accession-icon SRP032775
Molecular Hallmarks of Naturally Acquired Immunity to Malaria
  • organism-icon Homo sapiens
  • sample-icon 232 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Immunity to malaria can be acquired through natural exposure to Plasmodium falciparum (Pf), but only after years of repeated infections. Typically, this immunity is acquired by adolescence and confers protection against disease, but not Pf infection per se. Efforts to understand the mechanisms of this immunity are integral to the development of a vaccine that would mimic the induction of adult immunity in children. The current study applies transcriptomic analyses to a cohort from the rural village of Kalifabougou, Mali, where Pf transmission is intense and seasonal. Signatures that correlate with protection from malaria may yield new hypotheses regarding the biological mechanisms through which malaria immunity is induced by natural Pf infection. The resulting datasets will be of considerable value in the urgent worldwide effort to develop a malaria vaccine that could prevent more than a million deaths annually. Overall design: 108 samples; paired pre- and post-challenge for 54 individuals 198 samples; paired pre- and post-challenge for 99 individuals

Publication Title

Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE83212
Hypocotyl and cotyledon transcriptome in Arabidopsis thaliana treated with 1 ppm ethylene and shade (low PAR, low blue and low R:FR)
  • organism-icon Arabidopsis thaliana
  • sample-icon 52 Downloadable Samples
  • Technology Badge Icon Arabidopsis Gene 1.1 ST Array (aragene11st)

Description

Plants have evolved shoot elongation mechanisms to escape from diverse environmental stresses such as flooding and vegetative shade. The apparent similarity in growth responses suggests possible convergence of the signalling pathways. Shoot elongation is mediated by passive ethylene accumulating in flooded plant organs and by changes in light quality and quantity under vegetation shade. Here we study hypocotyl elongation as a proxy for shoot elongation and delineated Arabidopsis hypocotyl length kinetics in response to ethylene and shade. Based on these kinetics, we further investigated ethylene and shade-induced genome-wide gene expression changes in hypocotyls and cotyledons separately. Both treatments induced a more extensive transcriptome reconfiguration in the hypocotyls compared to the cotyledons. Bioinformatics analyses suggested contrasting regulation of growth promotion- and photosynthesis-related genes. These analyses also suggested an induction of auxin, brassinosteroid and gibberellin signatures and the involvement of several candidate regulators in the elongating hypocotyls. Pharmacological and mutant analyses confirmed the functional involvement of several of these candidate genes and physiological control points in regulating stress-escape responses to different environmental stimuli. We discuss how these signaling networks might be integrated and conclude that plants, when facing different stresses, utilise a conserved set of transcriptionally regulated genes to modulate and fine tune growth.

Publication Title

Ethylene- and Shade-Induced Hypocotyl Elongation Share Transcriptome Patterns and Functional Regulators.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE72425
Systematic identification of changes in the yeast protein interaction network in response to environmental, chemical, and genetic perturbation
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Quantitative analysis of protein interaction network dynamics in yeast.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE72423
Systematic identification of changes in the yeast protein interaction network in response to environmental, chemical, and genetic perturbation [transcriptome data]
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

To understand the principles underlying protein-protein interaction (PPI) complex changes in response to external perturbations, we created a highly multiplexed version of the murine dihydrofolate reductase protein complementation assay (mDHFR PCA) in Saccharomyces cerevisiae, allowing quantitative PPI complex profiling in vivo. We investigated the effects of 14 different conditions (including small molecules, abiotic stress factors, and nutrient composition) on a total of 1383 PPIs. More than half of PPIs (758) were found to be variable, and their Gene Ontology (GO) annotations were found to be informative of both the nature of the perturbation within each condition, as well as the overall variability of the interactions across conditions. Many perturbations triggered network changes characterized by large connected modules centered around highly connected proteins ('hubs'), suggesting that cellular control of a few proteins (e.g., by mRNA levels) can induce widespread PPI remodeling. Under a diauxic shift from glucose to ethanol as the main carbon source, we found a striking relationship between PPI changes measured by our assay and those predicted by mRNA expression under a simple law of mass action based model.

Publication Title

Quantitative analysis of protein interaction network dynamics in yeast.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE31355
A genome wide methylation map of neuroblastoma cell lines
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Genome-wide promoter methylation analysis in neuroblastoma identifies prognostic methylation biomarkers.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE31229
Neuroblastoma cell lines treated with DAC (2'-deoxy-5-azacytidine), a DNA-methylation inhibitor
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

8 neuroblastoma (NB) cell lines (CLB-GA, IMR-32, SH-SY5Y, N206, CHP-902R, LAN-2, SK-N-AS, SJNB-1) were profiled on the Affymetrix HGU-133plus2,0 platform before and after treatment with DAC (2'-deoxy-5-azacytidine) to investigate the influence on expression after inhibiting DNA-methylation

Publication Title

Genome-wide promoter methylation analysis in neuroblastoma identifies prognostic methylation biomarkers.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE55594
Gene expression profiling of breast fibroadenomas
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Fibroadenomas are the most common benign breast tumors in women under 30. Unlike their malignant counterparts, relatively molecular profiling has been done on fibroadenomas. Here we performed gene expression profiling on ten fibroadenomas in order to better characterize these tumors. Through targeted amplicon sequencing, we have found that six of these tumors have MED12 mutations. We show that the MED12 mutations, among others, are associated with activated estrogen signaling, as well as increased invasiveness through upregulation of ECM remodelling genes.

Publication Title

Exome sequencing identifies highly recurrent MED12 somatic mutations in breast fibroadenoma.

Sample Metadata Fields

Age

View Samples
accession-icon GSE29565
Expression data from chicken embryonic fibroblasts infected with Toxoplasma gondii
  • organism-icon Gallus gallus
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Strain-dependent host transcriptional responses to Toxoplasma infection are largely conserved in mammalian and avian hosts.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE29563
Host responses in chicken embryonic fibroblasts infected with different strains of Toxoplasma gondii [F1 progeny]
  • organism-icon Gallus gallus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Toxoplasma gondii is a ubiquitous protozoan pathogen able to infect both mammalian and avian hosts. Surprisingly, just three strains appear to account for the majority of isolates from Europe and N. America.

Publication Title

Strain-dependent host transcriptional responses to Toxoplasma infection are largely conserved in mammalian and avian hosts.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE29562
Strain-dependent host responses in chicken embryonic fibroblasts infected with Toxoplasma gondii [ME49, CEP, and Mock]
  • organism-icon Gallus gallus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Chicken Genome Array (chicken)

Description

Toxoplasma gondii is a ubiquitous protozoan pathogen able to infect both mammalian and avian hosts. Surprisingly, just three strains appear to account for the majority of isolates from Europe and N. America.

Publication Title

Strain-dependent host transcriptional responses to Toxoplasma infection are largely conserved in mammalian and avian hosts.

Sample Metadata Fields

Cell line, Time

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact