refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 16 results
Sort by

Filters

Technology

Platform

accession-icon GSE10162
Transcriptional Adaptation to Clcn5 Knockout in Proximal Tubules of the Mouse Kidney
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Dent disease has multiple defects attributed to proximal tubule malfunction including low molecular weight proteinuria, aminoaciduria, phosphaturia and glycosuria. In order to understand the changes in kidney function of the Clc5 transporter gene knockout mouse model of Dent disease, we examined gene expression profiles from proximal tubules of mouse kidneys.

Publication Title

Transcriptional adaptation to Clcn5 knockout in proximal tubules of mouse kidney.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE69359
RAS/MAPK activation drives resistance to Smo inhibition, metastasis and tumor evolution in Shh pathway-dependent tumors
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Aberrant Shh signaling promotes tumor growth in diverse human cancers. The importance of Shh signaling is particularly evident in medulloblastoma and basal cell carcinoma (BCC), where inhibitors targeting the Shh pathway component Smoothened (Smo) show great therapeutic promise. However, the emergence of drug resistance limits long-term efficacy and the mechanisms of resistance remain poorly understood. Using new culturing techniques, we established a cohort of Shh pathway-driven medulloblastoma cell lines derived from Ptch+/- mice. Using this new model, we identify activation of the RAS/MAPK pathway circumvents Shh pathway-dependency, drives tumor growth and enhances metastatic behavior.Together these findings reveal a critical role of RAS/MAPK pathway in drug resistance and tumor evolution of Shh pathway-dependent tumors.

Publication Title

RAS/MAPK Activation Drives Resistance to Smo Inhibition, Metastasis, and Tumor Evolution in Shh Pathway-Dependent Tumors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE12748
Weighted Gene Coexpression Network Analysis Identifies Biomarkers in Glycerol Kinase Deficient Mice
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Symptomatic glycerol kinase deficiency (GKD) is associated with episodic metabolic and central nervous system deterioration. We report here the first application of Weighted Gene Co-Expression Network Analysis (WGCNA) to investigate a knockout (KO) murine model of a human genetic disease. WGCNA identified networks and key hub transcripts from liver mRNA of glycerol kinase (Gyk) KO and wild type (WT) mice. Day of life 1 (dol1) samples from KO mice contained a network module enriched for organic acid metabolism before Gyk KO mice develop organic acidemia and die on dol3-4 and the module containing Gyk was enriched with apoptotic genes. Roles for the highly connected Acot, Psat and Plk3 transcripts were confirmed in cell cultures and subsequently validated by causality testing. We provide evidence that GK may have an apoptotic moonlighting role that is lost in GKD. This systems biology strategy has improved our understanding of GKD pathogenesis and suggests possible treatments.

Publication Title

Weighted gene co-expression network analysis identifies biomarkers in glycerol kinase deficient mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP032798
iPSC derived motor neuron cultures from C9ORF72 carriers
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative condition characterized by loss of motor neurons in the brain and spinal cord. Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9ORF72 gene are the most common cause of the familial form of ALS (C9-ALS), as well as frontotemporal lobar degeneration and other neurological diseases. How the repeat expansion causes disease remains unclear, with both loss of function (haploinsufficiency) and gain of function (either toxic RNA or protein products) proposed. We report a cellular model of C9-ALS with motor neurons differentiated from induced pluripotent stem cells (iPSCs) derived from ALS patients carrying the C9ORF72 repeat expansion. No significant loss of C9ORF72 expression was observed, and knockdown of the transcript was not toxic to cultured human motor neurons. Transcription of the repeat was increased, leading to accumulation of GGGGCC repeat–containing RNA foci selectively in C9-ALS iPSC-derived motor neurons. Repeat-containing RNA foci colocalized with hnRNPA1 and Pur-a, suggesting that they may be able to alter RNA metabolism. C9-ALS motor neurons showed altered expression of genes involved in membrane excitability including DPP6, and demonstrated a diminished capacity to fire continuous spikes upon depolarization compared to control motor neurons. Antisense oligonucleotides targeting the C9ORF72 transcript suppressed RNA foci formation and reversed gene expression alterations in C9-ALS motor neurons. These data show that patient-derived motor neurons can be used to delineate pathogenic events in ALS. Overall design: Transcriptome profiling from iPSC derived motor neurons compared to controls

Publication Title

Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP106034
mRNA Sequencing of Human PromoCells Using 3''-directed Digital Gene Expression (3''-DGE) Technique
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The differential gene expression of human cardiomyocytes induced by kinase inhibitors sorafenib and sunitinib is measured by a high-throughput mRNA-sequencing approach called 3''-DGE, that is based on a 3'' end-focused reference sequence library and a transcript molecule counting method with unique molecular identifiers (UMI) for correcting PCR bias. Overall design: Cells were treated with sunitinib, sorafenib, or vehicle control for 48 hours, and gene expression levels of all samples were measured by 3''-DGE and conventional random-primed mRNA-sequencing methods using paired-end reading to obtain the genome-wide expression profiles for each sample.

Publication Title

A Comparison of mRNA Sequencing with Random Primed and 3'-Directed Libraries.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE5287
Prediction of response and survival following chemotherapy in patients with advanced bladder cancer
  • organism-icon Homo sapiens
  • sample-icon 30 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

BACKGROUND

Publication Title

Emmprin and survivin predict response and survival following cisplatin-containing chemotherapy in patients with advanced bladder cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2152
The effect of FH mutations on fibroid expression profile
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

A series of gene expression measurements of uterine fibroids with mutated or wild-type fumarate hydratase (FH) gene.

Publication Title

Distinct expression profile in fumarate-hydratase-deficient uterine fibroids.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2724
The effect of FH mutations on fibroid expression profile, normal myometrium vs. FH-mutant fibroids.
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

A series of gene expression measurements of uterine fibroids with mutated fumarate hydratase (FH) gene and normal myometrium.

Publication Title

Distinct expression profile in fumarate-hydratase-deficient uterine fibroids.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2725
The effect of FH mutations on fibroid expression profile 2.
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

A series of gene expression measurements of normal myometrium and uterine fibroids with mutated or wild-type fumarate hydratase (FH) gene.

Publication Title

Distinct expression profile in fumarate-hydratase-deficient uterine fibroids.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP159651
Single-cell RNA-seq analysis of human tonsil CD4 T cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We performed single-cell RNA-seq on CD4 T cells isolated from the tonsils of one healthy donor. We used the 10x chromium technology. Overall design: Tonsil CD4 T cells were enriched by negative selection using magnetic beads. Cell populations (CXCR5+PD-1low T cells, CXCR5+PD-1int T cells and CXCR5+PD-1high T cells ) were further isolated by cell sorting. Cellular suspensions (3500 cells) were loaded on a 10X Chromium instrument (10X Genomics) according to manufacturer's protocol.

Publication Title

Human lymphoid organ cDC2 and macrophages play complementary roles in T follicular helper responses.

Sample Metadata Fields

Subject

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact