refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 4 of 4 results
Sort by

Filters

Technology

Platform

accession-icon SRP045126
Homo sapiens Transcriptome or Gene expression
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

RNA-seq Identification of a Novel Fusion Gene in a Mesenchymal Tumor

Publication Title

Characterization of FN1-FGFR1 and novel FN1-FGF1 fusion genes in a large series of phosphaturic mesenchymal tumors.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP040145
Human germ cell formation in xenotransplants of induced pluripotent stem cells carrying X chromosome aneuploidies
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Induced pluripotent stem cells (iPSCs) offer opportunity for insight into the genetic requirements of the X chromosome for somatic and germline development. Turner syndrome is caused by complete or partial loss of the second sex chromosome; while more than 90% of Turner cases result in spontaneous fetal loss, survivors display an array of somatic and germline clinical characteristics. Here, we derived iPSCs from Turner syndrome and control individuals and examined germ cell development as a function of X chromosome composition. We analyzed gene expression profiles of derived iPSCs and in vitro differentiated cells by single cell qRT-PCR and RNA-seq. We whoed that two X chromosomes are not necessary for reprogramming or pluripotency maintenance. Genes that escape X chromosome inactivation (XCI) between control iPSCs and those with X chromosome aneuploidies revealed minimal expression differences relative to a female hESC line. Moreover, when we induced germ cell differentiation via murine xenotransplantation of iPSC lines into the seminiferous tubules of busulfan-treated mice, we observed that undifferentiated iPSCs, independent of X chromosome composition, when placed within the correct somatic environment, are capable of forming early germ cells in vivo. Results indicate that two intact X chromosomes are not required for germ cell formation; however, clinical data suggest that two sex chromosomes are required for maintenance of human germ cells. Overall design: RNA-seq of H9 cells, iPSCs from Turner syndrome and control individuals and in vitro differentiated cells

Publication Title

Human germ cell formation in xenotransplants of induced pluripotent stem cells carrying X chromosome aneuploidies.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE7534
Pedigreed Primate Embryonic Stem Cells Express Homogeneous Familial Gene Profiles
  • organism-icon Macaca mulatta
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Rhesus Macaque Genome Array (rhesus)

Description

Pedigreed primate ESCs display homogeneous and reliable expression profiles.

Publication Title

Pedigreed primate embryonic stem cells express homogeneous familial gene profiles.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP076029
Identification of a Transcription Factor that Promotes Spermatogonial Stem Cell Establishment
  • organism-icon Mus musculus
  • sample-icon 423 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Spermatogonial stem cells (SSCs) are critical for maintaining spermatogenesis throughout adult life. Little is known about how SSCs are first generated. Here, we report the identification of a transcription factor—RHOX10—that promotes the initial establishment of SSCs. We were led to this discovery because we found that conditional loss of a large X-linked gene cluster comprised of 33 related homeobox genes, including Rhox10, causes defects predicted if SSCs fail to be generated or maintained. Remarkably, KO of only Rhox10 elicits SSC-related defects indistinguishable from KO of the entire gene cluster. Using a battery of approaches, including single cell-RNAseq analysis, we determined that loss of Rhox10 causes accumulation of undifferentiated germ cells—Pro-spermatogonia (ProSG)—at a time when they normally would form SSCs. The identification of a transcription factor that drives the initial generation of SSCs has potential therapeutic applications for infertility. Overall design: Single cell RNA-seq analysis of ID4-positive testicular cells from Wildtype and Rhox10 knockout mice (Postnatal day 3 and 7)

Publication Title

The Homeobox Transcription Factor RHOX10 Drives Mouse Spermatogonial Stem Cell Establishment.

Sample Metadata Fields

Specimen part, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact