refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 57 results
Sort by

Filters

Technology

Platform

accession-icon GSE27378
Differential effects of inhibition of bone morphogenic protein (BMP) signalling on T-cell activation and differentiation
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Dorsomorphin is a small molecule inhibitor of type I bone morphogenic protein receptors (BMPRs). We have found that dorsomorphin affects a wide range of T cell function. In order to obtain the bigger picture of the effects of DM in T cell activation. transcriptomic analysis was performed using mouse primary CD25-CD4+ T cells with either DM (4 M) or vehicle in the presence or absence of stimulation by anti-CD3 and -CD28 antibodies.

Publication Title

Differential effects of inhibition of bone morphogenic protein (BMP) signalling on T-cell activation and differentiation.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE71580
High Dose Tamoxifen in the Mouse Gastric Epithelium
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Tamoxifen, a selective estrogen receptor modulator, is widely used in research and clinically in patients. Tamoxifen injection (3 consecutive days, intraperitoneal, 5mg/20g mouse body weight) causes dramatic rearrangement of the gastric mucosa with loss of > 90% of PCs, a 6-fold increase in proliferation in stem/progenitor cells, and morphological changes in the ZCs in the bases of gastric-units.

Publication Title

Identification of alanyl aminopeptidase (CD13) as a surface marker for isolation of mature gastric zymogenic chief cells.

Sample Metadata Fields

Time

View Samples
accession-icon GSE141673
Expression data of metformin treated wild type and parietal cell- specific AMPK-deficient mice
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Genes related to AMPK activation, cellular respiration, and metabolism are enriched in the gastric parietal cell population. Metformin is known activator of AMPK.

Publication Title

A Metformin-Responsive Metabolic Pathway Controls Distinct Steps in Gastric Progenitor Fate Decisions and Maturation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE152076
Expression date from mouse Hepatocytes
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The fields of drug discovery and regenerative medicine require large numbers of adult human primary hepatocytes. For this purpose, it is desirable to use hepatocyte-like cells (HLCs) differentiated from human pluripotent stem cells. To develop an efficient HLCs induction method, we constructed a red fluorescent reporter, CYP3A7R, in which DsRed is placed under the transcriptional regulation of CYP3A7 coding for a human fetus-type P450 enzyme. We created transgenic mice using mouse embryonic stem cells (mESCs) carrying a CYP3A7R transgene.

Publication Title

Real-time fluorometric evaluation of hepatoblast proliferation in vivo and in vitro using the expression of CYP3A7 coding for human fetus-specific P450.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23216
PITX1 suppresses TERT transcription
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Using microcell-mediated chromosome transfer (MMCT) into the mouse melanoma cell line, B16F10, we have previously found that human chromosome 5 carries a gene, or genes, that can negatively regulate TERT expression. To identify the gene responsible for the regulation of TERT transcription, we performed cDNA microarray analysis using parental B16F10 cells, telomerase negative B16F10 microcell hybrids with a human chromosome 5 (B16F10MH5), and its revertant clones (MH5R) with reactivated telomerase. Here we report the identification of PITX1, whose restoration leads to the downregulation of mouse tert (mtert) transcription, as a TERT suppressor gene. Additionally, both human TERT (hTERT) and mouse TERT (mtert) promoter activity can be suppressed by PITX1. We showed that three and one binding sites, respectively, within the hTERT and mtert promoters that express a unique conserved region are responsible for the transcriptional activation of TERT. Furthermore, we showed that PITX1 binds to the TERT promoter both in vitro and in vivo. Thus, PITX1 suppresses TERT transcription through direct binding to the TERT promoter, which ultimately regulates telomerase activity.

Publication Title

Identification of PITX1 as a TERT suppressor gene located on human chromosome 5.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP151069
Fibroblasts in cholesteatoma activate osteoclasts.
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Cholesteatoma arises from a tympanic membrane and expands in the middle ear. It erodes the surrounding bone and leads to hearing loss or brain abscess which is lethal complication. Currently, the only effective treatment is the complete surgical removal of cholesteatoma. However, possibility of recurrence is not satisfactory, other clinical treatment is desired. A mechanism of bone erosion in rheumatoid arthritis, which is one of the bone destructive disease, is progressing to be clarified. Receptor activator of NF-?B ligand (RANKL) secreted by synovial fibroblasts, T cells, and B cells lead to differentiation and activation of osteoclast precursor in rheumatoid arthritis. In contrast it has been still unclear why cholesteatoma erodes bone. In the current study we studied that osteoclasts statistically increased in cholesteatoma, and that fibroblasts in the prematrix of cholesteatoma express RANKL. In this study we studied that osteoclasts statistically increased in cholesteatoma, and that fibroblasts in the prematrix of cholesteatoma express RANKL. We investigated upstream of RANKL from RNA sequence results by Ingenuity Pathways Analysis, which is data base of abundance information about molecular biology. Overall design: To generate the transcriptome profiles of the permatrix of cholesteatoma and dermis cut by laser micro dissection from cholesteatoma, three pairs of both sample from the same patients were adapted to RNA sequencing.

Publication Title

Osteoclasts Modulate Bone Erosion in Cholesteatoma via RANKL Signaling.

Sample Metadata Fields

Disease, Subject

View Samples
accession-icon GSE25252
Comparison of expression profiles of Foxp3(+)epigenetics(-) T cells, Foxp3(-)epigenetics(+) T cells, and Foxp3(+)epigenetics(+) T cells
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Analysis of Foxp3(+)epigenetics(-) T cells, Foxp3(-)epigenetics(+) T cells, and Foxp3(+)epigenetics(+) T cells. Results indicate regulatory T cell (Treg) ontogenesis requires two independent processes, expression of the transcription factor Foxp3 and establishment of Treg epigenetic programs induced by T cell receptor (TCR) stimulation.

Publication Title

T cell receptor stimulation-induced epigenetic changes and Foxp3 expression are independent and complementary events required for Treg cell development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE62114
Expression data from Werner syndrome iPSCs
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Werner syndrome (WS) is a premature aging disorder characterized by chromosomal instability and cancer predisposition. Mutations in WRN are responsible for the disease and cause telomere dysfunction, resulting in accelerated aging. In the present study, we describe the effects of long-term culture on WS iPSCs, which acquired and maintained infinite proliferative potential for self-renewal over 2 years. After long-term cultures, WS iPSCs exhibited stable undifferentiated states and differentiation capacity, and premature upregulation of senescence-associated genes in WS cells was completely suppressed in WS iPSCs despite WRN deficiency.

Publication Title

Reprogramming suppresses premature senescence phenotypes of Werner syndrome cells and maintains chromosomal stability over long-term culture.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE22187
Changes in gene expression in implantation sites by absence of Cbs
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The change in gene expression on the 8th day of gestation was investigated using DNA microarrays.

Publication Title

Cystathionine β-synthase deficiency causes infertility by impairing decidualization and gene expression networks in uterus implantation sites.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE22189
Changes in gene expression in inter-implantation sites by absence of Cbs
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

The change in gene expression on the 8th day of gestation was investigated using DNA microarrays. Uterine gene expression of interimplanted sites was analyzed in female mice.

Publication Title

Cystathionine β-synthase deficiency causes infertility by impairing decidualization and gene expression networks in uterus implantation sites.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact