refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 6 of 6 results
Sort by

Filters

Technology

Platform

accession-icon GSE8442
Profiling of Angiotensin II Rapid Response Genes in Human, Bovine, and Rat Adrenocortical Cells.
  • organism-icon Bos taurus, Homo sapiens, Rattus norvegicus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Angiotensin II (Ang-II) regulates adrenal steroid production and gene transcription through several signaling pathways. Changes in gene transcription occur within minutes after Ang-II stimulation, causing an acute increase in aldosterone production and subsequent increase in the overall capacity to produce aldosterone. Our goal was to compare the Ang-II regulation of early gene expression and confirm the upregulation of selected genes using quantitative real-time RT-PCR (qPCR) across three species: human, bovine, and rat.

Publication Title

Angiotensin-II acute regulation of rapid response genes in human, bovine, and rat adrenocortical cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10616
Human colon expression in healthy controls, colon-only CD, ileo-colonic CD, and UC
  • organism-icon Homo sapiens
  • sample-icon 58 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Colon gene expression in human IBD. The three major clinical subsets of Inflammatory Bowel Disease (IBD) include colon-only Crohn's Disease (CD), ileo-colonic CD, and Ulcerative Colitis (UC). These experiments tested differential colon gene expression in these three types of IBD, relative to healthy control samples, and the local degree of mucosal inflammation as measured by the CD Histological Index of Severity (CDHIS). Colon biopsy samples were obtained from IBD patients at diagnosis and during therapy, and healthy controls. The global pattern of gene expression was determined using GeneSpring software, with a focus upon candidate genes identified in a recent genome wide association study in pediatric onset IBD. Data suggested that two of these candidate genes are up regulated in pediatric IBD, partially influenced by local mucosal inflammation.

Publication Title

Loci on 20q13 and 21q22 are associated with pediatric-onset inflammatory bowel disease.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP032798
iPSC derived motor neuron cultures from C9ORF72 carriers
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Amyotrophic lateral sclerosis (ALS) is a severe neurodegenerative condition characterized by loss of motor neurons in the brain and spinal cord. Expansions of a hexanucleotide repeat (GGGGCC) in the noncoding region of the C9ORF72 gene are the most common cause of the familial form of ALS (C9-ALS), as well as frontotemporal lobar degeneration and other neurological diseases. How the repeat expansion causes disease remains unclear, with both loss of function (haploinsufficiency) and gain of function (either toxic RNA or protein products) proposed. We report a cellular model of C9-ALS with motor neurons differentiated from induced pluripotent stem cells (iPSCs) derived from ALS patients carrying the C9ORF72 repeat expansion. No significant loss of C9ORF72 expression was observed, and knockdown of the transcript was not toxic to cultured human motor neurons. Transcription of the repeat was increased, leading to accumulation of GGGGCC repeat–containing RNA foci selectively in C9-ALS iPSC-derived motor neurons. Repeat-containing RNA foci colocalized with hnRNPA1 and Pur-a, suggesting that they may be able to alter RNA metabolism. C9-ALS motor neurons showed altered expression of genes involved in membrane excitability including DPP6, and demonstrated a diminished capacity to fire continuous spikes upon depolarization compared to control motor neurons. Antisense oligonucleotides targeting the C9ORF72 transcript suppressed RNA foci formation and reversed gene expression alterations in C9-ALS motor neurons. These data show that patient-derived motor neurons can be used to delineate pathogenic events in ALS. Overall design: Transcriptome profiling from iPSC derived motor neurons compared to controls

Publication Title

Targeting RNA foci in iPSC-derived motor neurons from ALS patients with a C9ORF72 repeat expansion.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP044925
Transcription factor p63 bookmarks genomic loci in epithelial cells and regulates a subset of target genes during epidermal differentiation through dynamic enhancers (RNA-Seq)
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Tightly controlled gene expression orchestrated by the transcription factor p63 during epithelial differentiation is important for development of epithelial-related structures such as epidermis, limb and craniofacial regions. How p63 regulates spatial and temporal expression of its target genes during these developmental processes is however not yet clear. By epigenomics profiling in stem cells established from one of these epithelial structures, the epidermis, we provide a global map of p63-bound regulatory elements that are categorized as single enhancers and clustered enhancers during epidermal differentiation. Transcriptomics analysis shows dynamic gene expression patterns during epidermal differentiation that correlates with the activity of p63-bound enhancers rather than with p63 binding itself. Only a subset of p63-bound enhancers is active in epidermal stem cells, and inactive p63-bound enhancers appear to function in gene regulation during the development of other epithelial tissues. Our data suggest a paradigm that p63 bookmarks genomic loci during the commitment of the epithelial lineage and regulates gene expression in different epithelial tissues through tissue-specific active enhancers. The catalogue of differentially expressed epidermal genes including non-coding RNAs and epithelial enhancers reported here provides a rich resource for studies of epithelial development and related diseases. Overall design: Comparison of gene expression at different stages of keratinocyte differentiation

Publication Title

Genome-wide p63-regulated gene expression in differentiating epidermal keratinocytes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE2227
The role of basal immunoglobulin signaling in immature B cell development
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Murine Genome U74A Array (mgu74a)

Description

This series represent several subgroups of experiments designed to investigate the role of basal immunoglobulin signaling in immature B cell development. The first subgroup of arrays (Ctrl Mhi, Cre Mhi, Cre Mlo) was done to identify the changes in gene expression in immature B cells as a consequence of inducible deletion of surface IgM expression via Cre-LoxP mediated excision of Ig heavy chain. The second subgroup of arrays (GFPneg, GFPpos, FxE Ctrl, FxE HA) was done to identify the changes in gene expression in immature B cells as a consequence of blockade of tyrosine kinase signaling with herbimycin A treatment. The third subgroup of arrays (FxD, FxE, B6 Mneg, HEL Mhi) was done to establish gene expression profiles of immature B, pre B and pro B cells as reference platforms for the other two subgroups. (Tze etal. Public Library of Science Biology, 2005)

Publication Title

Basal immunoglobulin signaling actively maintains developmental stage in immature B cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP106148
p63 controls the enhancer landscape during keratinocyte differentiation
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon

Description

Here we characterized the transcriptome and epigenome of control keratinocytes during differentiation. Epigenomic analyses showed that the temporal enrichment of p63 motifs in dynamic enhancers underscores the key role of p63 in orchestrating the enhancer landscape during keratinocyte differentiation. The cooperation between p63 and its co-regulating factors, such as RUNX1, is important for the finetuning of gene expression. Overall design: RNA-Seq, H3K4me3 ChIP-Seq and H3K27me3 ChIP-Seq of keratinocytes during differentiation on day0(proliferation), day2(early differentiation), day4(mid differentiation) and day7(late differentiation). RUNX1 ChIP-Seq of keratinocytes at the proliferation stage(day0).

Publication Title

Mutant p63 Affects Epidermal Cell Identity through Rewiring the Enhancer Landscape.

Sample Metadata Fields

No sample metadata fields

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact