refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 116 results
Sort by

Filters

Technology

Platform

accession-icon GSE84893
Integration of cell type deconvolution with immune pathways identifies gene networks of host defense and immunopathology in leprosy
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Transcriptome profiles derived from the site of human disease has led to the identification of genes that contribute to pathogenesis, yet the complex mixture of cell types in these lesions has been an obstacle for defining specific mechanisms. Leprosy provides an outstanding model to study host defense and pathogenesis in a human infectious disease, given its clinical spectrum which interrelates with the host immunologic and pathologic responses. Here, we investigated gene expression profiles derived from skin lesions for each clinical subtype of leprosy, analyzing gene co-expression modules by cell type deconvolution. In lesions from tuberculoid leprosy patients, those with the self-limited form of the disease, dendritic cells were linked with MMP12 as part of a tissue remodeling network that contributes to granuloma formation. In lesions from lepromatous leprosy patients, those with disseminated disease, macrophages were linked with a gene network that programs phagocytosis. In erythema nodosum leprosum, neutrophil and endothelial cell gene networks were identified as part of the vasculitis that results in tissue injury. The present integrated computational approach provides a systems approach towards identifying cell-defined functional networks that contribute to host defense and immunopathology at the site of human infectious disease.

Publication Title

Cell-type deconvolution with immune pathways identifies gene networks of host defense and immunopathology in leprosy.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE70213
The effect of Nebulin-Deficiency on Skeletal Muscle
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Nebulin is a giant filamentous protein that is coextensive with the actin filaments of the skeletal muscle sarcomere. Nebulin mutations are the main cause of nemaline myopathy (NEM), with typical NEM adult patients having low expression of nebulin, yet the roles of nebulin in adult muscle remain poorly understood. To establish nebulins functional roles in adult muscle we performed studies on a novel conditional nebulin KO (Neb cKO) mouse model in which nebulin deletion was driven by the muscle creatine kinase (MCK) promotor. Neb cKO mice are born with high nebulin levels in their skeletal muscle but within weeks after birth nebulin expression rapidly falls to barely detectable levels Surprisingly, a large fraction of the mice survives to adulthood with low nebulin levels (<5% of control), contain nemaline rods, and undergo fiber-type switching towards oxidative types. These microarrays investigate the changes in gene expression when nebulin is deficient.

Publication Title

Nebulin deficiency in adult muscle causes sarcomere defects and muscle-type-dependent changes in trophicity: novel insights in nemaline myopathy.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP032775
Molecular Hallmarks of Naturally Acquired Immunity to Malaria
  • organism-icon Homo sapiens
  • sample-icon 232 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Immunity to malaria can be acquired through natural exposure to Plasmodium falciparum (Pf), but only after years of repeated infections. Typically, this immunity is acquired by adolescence and confers protection against disease, but not Pf infection per se. Efforts to understand the mechanisms of this immunity are integral to the development of a vaccine that would mimic the induction of adult immunity in children. The current study applies transcriptomic analyses to a cohort from the rural village of Kalifabougou, Mali, where Pf transmission is intense and seasonal. Signatures that correlate with protection from malaria may yield new hypotheses regarding the biological mechanisms through which malaria immunity is induced by natural Pf infection. The resulting datasets will be of considerable value in the urgent worldwide effort to develop a malaria vaccine that could prevent more than a million deaths annually. Overall design: 108 samples; paired pre- and post-challenge for 54 individuals 198 samples; paired pre- and post-challenge for 99 individuals

Publication Title

Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE39941
Genome wide transcriptional profiling of HIV positive and negative children with active tuberculosis, latent TB infection and other diseases
  • organism-icon Homo sapiens
  • sample-icon 491 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Diagnosis of childhood tuberculosis and host RNA expression in Africa.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE39940
Genome wide transcriptional profiling of HIV positive and negative children with active tuberculosis, latent TB infection and other diseases from South Africa and Malawi
  • organism-icon Homo sapiens
  • sample-icon 334 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The study aimed to define transcriptional signatures for detection of active TB (TB) compared to latent TB infection (LTBI) as well as to other diseases (OD) with similar clinical phenotypes in patients with and without HIV in two African paediatric populations.

Publication Title

Diagnosis of childhood tuberculosis and host RNA expression in Africa.

Sample Metadata Fields

Disease

View Samples
accession-icon GSE39939
Genome wide transcriptional profiling of HIV positive and negative children with active tuberculosis, latent TB infection and other diseases from Kenya
  • organism-icon Homo sapiens
  • sample-icon 157 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The study aimed to define transcriptional signatures for detection of active TB (TB) compared to latent TB infection (LTBI) as well as to other diseases (OD) with similar clinical phenotypes in patients with and without HIV in a paediatric cohort from Kenya

Publication Title

Diagnosis of childhood tuberculosis and host RNA expression in Africa.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP063006
Gene expression analysis of TIL rich HPV driven head and neck tumours reveals a distinct B-cell signature when compared to HPV independent tumours.
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Purpose: Human papilloma virus (HPV) associated head and neck squamous cell carcinoma (HNSCC) has a better prognosis than HPV(-) negative cancer. This may be due, in part, to the higher number of tumour infiltrating lymphocytes (TIL) in HPV(+) tumours. We used RNAseq to evaluate whether these differences in clinical behaviour could be explained simply by a numerical difference in TILs or whether there was a fundamental difference between TILs in these two settings. Patients and methods: Twenty-three consecutive HNSCC cases with high and moderate TIL density were subjected to RNAseq analysis. Differentially expressed genes (DEG) between 10 HPV(+) and 13 HPV(-) tumours were identified with EdgeR. Immune subset analysis was performed using, FAIME (Functional Analysis of Individual Microarray Expression) and Immune gene transcript count analysis. Results: 1634 genes were differentially expressed. There was a dominant immune signature in HPV(+) tumours. After normalizing expression profiles for numerical differences in T cells and B cells, 437 significantly DEGs still remained. A B-cell associated signature emerged, which segregated HPV(+) from HPV(-) cancers and included CD200, STAG3, GGA2, SPIB and ADAM28. Differential expression of these genes was confirmed by real-time quantitative PCR and immunohistochemistry. Conclusion: In our dataset, the difference associated with T-cells between patients with HPV(+) and (-) HNSCC was predominantly numerical. However, when TIL numbers are corrected, a distinct differential B-cell signature was revealed. Overall design: mRNA profiles of 10 HPV driven (HPV+) and 13 HPV independant (HPV-) head and neck squamous cell carcinoma (HNSCC) tumours were generated by RNA-Seq, using Illumina HiSeq 2000.

Publication Title

HPV, tumour metabolism and novel target identification in head and neck squamous cell carcinoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE47679
B cell-intrinsic STAT6 controls the germinal center response in type 2 immunity
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

By investigating the germinal center (GC) formation in STAT6ko/WT bone marrow-mixed chimera we found that GC formation in type 2 immune responses is dependent on B cell intrinsic expression of IL-4/IL-13-induced genes. We therefore used microarrays to find Stat6 dependent genes that are important for germinal center formation and/or organization after infection with the nematode Nippostrongylus brasiliensis (N. brasiliensis).

Publication Title

B-cell-intrinsic STAT6 signaling controls germinal center formation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP071965
A blood RNA signature for tuberculosis disease risk: a prospective cohort study
  • organism-icon Homo sapiens
  • sample-icon 330 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Identification of blood biomarkers that prospectively predict progression of Mycobacterium tuberculosis infection to tuberculosis disease might lead to interventions that combat the tuberculosis epidemic. We aimed to assess whether global gene expression measured in whole blood of healthy people allowed identification of prospective signatures of risk of active tuberculosis disease. RESULTS:Between July 6, 2005, and April 23, 2007, we enrolled 6363 from the ACS study and 4466 from independent South African and Gambian cohorts. 46 progressors and 107 matched controls were identified in the ACS cohort. A 16 gene signature of risk was identified. The signature predicted tuberculosis progression with a sensitivity of 66·1% (95% CI 63·2–68·9) and a specificity of 80·6% (79·2–82·0) in the 12 months preceding tuberculosis diagnosis. The risk signature was validated in an untouched group of adolescents (p=0·018 for RNA sequencing and p=0·0095 for qRT-PCR) and in the independent South African and Gambian cohorts (p values <0·0001 by qRT-PCR) with a sensitivity of 53·7% (42·6–64·3) and a specificity of 82·8% (76·7–86) in 12 months preceding tuberculosis. Interpretation: The whole blood tuberculosis risk signature prospectively identified people at risk of developing active tuberculosis, opening the possibility for targeted intervention to prevent the disease. Overall design: In this prospective cohort study, we followed up healthy, South African adolescents aged 12–18 years from the adolescent cohort study (ACS) who were infected with M tuberculosis for 2 years. We collected blood samples from study participants every 6 months and monitored the adolescents for progression to tuberculosis disease. A prospective signature of risk was derived from whole blood RNA sequencing data by comparing participants who developed active tuberculosis disease (progressors) with those who remained healthy (matched controls). After adaptation to multiplex qRT-PCR, the signature was used to predict tuberculosis disease in untouched adolescent samples and in samples from independent cohorts of South African and Gambian adult progressors and controls. Participants of the independent cohorts were household contacts of adults with active pulmonary tuberculosis disease.

Publication Title

A blood RNA signature for tuberculosis disease risk: a prospective cohort study.

Sample Metadata Fields

Sex, Age, Specimen part, Race, Subject

View Samples
accession-icon SRP135797
Single-cell transcriptomic analysis of tissue resident memory T cells in human lung cancer [ 10x genomics]
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

High numbers of tissue-resident memory T (TRM) cells have been associated with better clinical outcomes in cancer patients. However, the molecular characteristics that drive their efficient immune response to tumors are poorly understood. Here, using single-cell and bulk transcriptomic analysis of purified populations of TRM and non-TRM cells we characterise these populations Overall design: Population and single cell profiling of subtypes of CD8 cells isolated from human lung and lung tumour samples with flow cytometry

Publication Title

Single-cell transcriptomic analysis of tissue-resident memory T cells in human lung cancer.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact