refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 42 results
Sort by

Filters

Technology

Platform

accession-icon GSE3998
Prostate cell specific expression
  • organism-icon Homo sapiens
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Luminal, basal, stromal, and endothelial cells were MACS sorted from whole tissue. Targets from five biological replicates of each were generated and the expression profiles were determined using Affymetrix U133 Plus 2.0 arrays. These data represent cell specific transcriptomes.

Publication Title

Transcriptomes of human prostate cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP153147
Inter-tumoral heterogeneity in SCLC is influenced by the cell-type of origin
  • organism-icon Mus musculus
  • sample-icon 41 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500, Illumina HiSeq 4000

Description

We describe two different routes of SCLC metastatic progression Overall design: We performed RNA-seq on primary tumors and metastasis from SCLC mouse model (Rb/p53/p130/mTmG) transduced by Ad-CMV-Cre or Ad-CGRP-Cre

Publication Title

Axon-like protrusions promote small cell lung cancer migration and metastasis.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP027592
Dampening of expression oscillations by synchronous regulation of a microRNA and its target
  • organism-icon Caenorhabditis elegans
  • sample-icon 71 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The complexity of metazoan organisms requires precise spatiotemporal regulation of gene expression during development. To identify different modes of developmental gene regulation we measured the transcriptome throughout development of the nematode Caenorhabditis elegans by mRNA sequencing with high temporal resolution. We find that approximately 2,000 transcripts undergo expression oscillations synchronized with larval transitions while thousands of genes are expressed in temporal gradients, similar to known timing regulators. By counting transcripts in individual animals, we show that the pulsatile expression of the microRNA (miRNA) lin-4 maintains the temporal gradient of its target lin-14 by dampening its expression oscillations. Our results demonstrate that this insulation is optimal when pulsatile expression of the miRNA and its target is synchronous. We propose that such a miRNA-mediated incoherent feed-forward loop is a potent filter that prevents propagation of potentially deleterious gene expression fluctuations during the development of an organism. Overall design: We analyzed RNA-seq data of wild-type worms at two different temperatures, 20C and 25C, from samples picked every 2hrs and 1.5 hrs, resspectively, spanning all larval stages (L1,L2,L3,L4). At 20C we picked samples for L1-L3 (sample DH2: 0 hrs to 38 hrs) and for L4 (sample DH5: 38 hrs to 48 hrs) from independent populations. At 25C, all samples were picked from the same worm population (sample DH3: 0 hrs to 28.5 hrs). This time course ends at 28.5 hrs since at higher temperature nematode development is accelarated. Finally, we measured mRNA expression at 20C in a lin-4 knockout mutant worm (lin-4(e912)), again spanning all larval stages (sample DH4: 0 hrs to 48 hrs). Each sequencing sample consisted of a mixture of all time points with mRNA from different time points barcoded with Illumina barcodes and was sequenced on one or more lanes (DH2: 3 lanes; DH3: 3 lanes; DH4: 4 lanes; DH5: 1 lane) of an Illumina HiSeq2000.

Publication Title

Dampening of expression oscillations by synchronous regulation of a microRNA and its target.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP078070
Med1 is Necessary for Cardiac Function
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Analysis of ventricular derived mRNA from Med1fl/fl and Med1fl/fl cardiac knockout mice. Results provide insight into the molecual rmechanisms underlying dilated cardiomyopathy. Overall design: Methods: Ventricular samples (4 per group) from 21-day-old Med1fl/fl and Med1 cardiac knockout mice were used to generate polyA enriched stranded RNA libraries followed by RNAseq using the Illumina HiSeq platform. Raw sequence reads were analyzed with BaseSpace (www.illumina.com) by aligning reads to the mus musculus mm10 genome using the TopHat Alignment app. Transcripts were assembled and significant differentially expressed genes were determined with the Cufflinks Assembly and DE app using a false discovery rate <0.05. qRT–PCR validation was performed using SYBR Green assays

Publication Title

Cardiac Med1 deletion promotes early lethality, cardiac remodeling, and transcriptional reprogramming.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP116018
Whole-organism clone-tracing using single-cell sequencing
  • organism-icon Danio rerio
  • sample-icon 160 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

We present ScarTrace, a single-cell sequencing strategy that allows us to simultaneously quantify information on clonal history and cell type for thousands of single cells obtained from different organs from adult zebrafish. Using this approach we show that all blood cells types in the kidney marrow arise from a small set of multipotent embryonic. In contrast, we find that cells in the eyes, brain, and caudal tail fin arise from many embryonic progenitors, which are more restricted and produce specific cell types in the adult tissue. Next we use ScarTrace to explore when embryonic cells commit to forming either left or right organs using the eyes and brain as a model system. Lastly we monitor regeneration of the caudal tail fin and identify a subpopulation of resident macrophages that have a clonal origin that is distinct from other blood cell types. Overall design: Single cell sequencing data from cells isolated from zebrafish organs (whole kidney marrow, forebrain, hindbrain, left eye, right eye, left midbrain, right midbrain, and regenerated fin). For each cell, we provide libraries with transcritpome and with clonal information, respectively.

Publication Title

Whole-organism clone tracing using single-cell sequencing.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP123459
Single cell sequencing of the hippocampal niche
  • organism-icon Mus musculus
  • sample-icon 80 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Adult neurogenesis in the murine dentate gyrus occurs in a specialized microenvironment that sustains the generation of neurons during life. To fully understand adult neurogenesis, it is essential to determine the neural stem cell (NSC) and progenitor developmental stages, their molecular determinants, and the niche cellular and molecular composition. We report on a single cell RNA sequencing study of the hippocampal niche, performed by isolating all the non-neuronal cell populations. Our analysis provides a comprehensive description of the dentate gyrus cells and allows the identification of exclusive cell type-specific markers. We define the developmental stages and transcriptional dynamics of NSCs and progenitors, and find that while NSCs represent a heterogeneous cellular continuum, progenitors can be grouped in distinct subtypes. We determine the oligodendrocyte lineage and transcriptional dynamics, and describe microglia transcriptional profile and activation state. The combined data constitutes a valuable resource to understand regulatory mechanisms of adult neurogenesis. Overall design: We generated transciptome data from cells unbiasely sorted from the hippocampal neurogenic niche after depleting the neuronal population

Publication Title

A Single-Cell RNA Sequencing Study Reveals Cellular and Molecular Dynamics of the Hippocampal Neurogenic Niche.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP073803
Producing enteroendocrine cells from Lgr5+ intestinal stem cells by manipulating quiescence
  • organism-icon Mus musculus
  • sample-icon 58 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Lgr5+ adult intestinal stem cells are highly proliferative throughout life. Single Lgr5+ stem cells can be cultured into 3D epithelial organoids containing all cell types at nearnormal ratios. Culture conditions to generate the main cell types have been established previously, but signals inducing the various types of enteroendocrine cells (EECs) have remained elusive. Here we generate quiescent Lgr5+ stem cells in vitro by inhibition of the EGF-receptor (EGFR) and mitogen-associated protein kinase (MAPK) signaling pathways in organoids, a state that can be readily reversed. Quiescent Lgr5+ stem cells gain a distinct molecular signature, biased towards EEC differentiation. Indeed, combined inhibition of Wnt, Notch and MAPK pathways efficiently generates a diversity of EEC subtypes in vitro. Our observations uncouple Wnt-dependent stem cell maintenance from EGF-dependent proliferation and cell fate choice, and provide an in vitro approach for the study of the elusive EECs. Overall design: We established a stable culture of quiescent Lgr5+ intestinal stem cells in culture. These highly resemble quiescent secretory precursors, which has high EEC differentiation potential. Following on this lead, we elucidated what signals are required to generate EEC cells of all varieties, and provide a method to produce these EEC cells in large numbers.

Publication Title

Induced Quiescence of Lgr5+ Stem Cells in Intestinal Organoids Enables Differentiation of Hormone-Producing Enteroendocrine Cells.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP072289
Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells
  • organism-icon Mus musculus
  • sample-icon 38 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Gene expression heterogeneity in the pluripotent state of mouse embryonic stem cells (mESCs) has been increasingly well-characterized. In contrast, exit from pluripotency and lineage commitment have not been studied systematically at the single-cell level. Here we measured the gene expression dynamics of retinoic acid driven mESC differentiation using an unbiased single-cell transcriptomics approach. We found that the exit from pluripotency marks the start of a lineage bifurcation as well as a transient phase of susceptibility to lineage specifying signals. Our study revealed several transcriptional signatures of this phase, including a sharp increase of gene expression variability and a handover between two classes of transcription factors. In summary, we provide a comprehensive analysis of lineage commitment at the single cell level, a potential stepping stone to improved lineage control through timing of differentiation cues. Overall design: Bulk and single-cell RNA-seq (SCRB-seq and SMART-seq) of mouse embryonic stem cells after different periods of continuous exposure to retinoic acid. Bulk RNA-seq of cell lines derived after retinoic exposure and after differentiation with retinoic acid and MEK inhibitor combined.

Publication Title

Dynamics of lineage commitment revealed by single-cell transcriptomics of differentiating embryonic stem cells.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE42303
TIMP2 and TIMP3 have divergent roles in early renal tubulointerstitial injury
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Tissue inhibitors of metalloproteinases (TIMP) are endogenous inhibitors of matrix metalloproteinases (MMP). While TIMP2 and TIMP3 inhibit MMPs, TIMP3 also inhibits activation of pro-MMP2 whereas TIMP2 promotes it. Here we assessed the differential role of TIMP2 and TIMP3 in renal injury using the unilateral ureteral obstruction model. Gene microarray assay showed that post-obstruction, the lack of TIMP3 had a greater impact on gene expression of intermediate, late injury- and repair-induced transcripts, kidney selective transcripts and solute carriers. Renal injury in TIMP3-/-, but not in TIMP2-/- mice increased expression of collagen type I/III, connective tissue growth factor, transforming growth factor- and the downstream Smad2/3 pathway. Interestingly, ureteral obstruction markedly increased MMP2 activation in the kidneys of TIMP3-/- mice which was completely blocked in the kidneys of TIMP2-/- mice. These changes are consistent with enhanced renal tubulointerstitial fibrosis in TIMP3-/- and its reduction in TIMP2-/- mice. The activity of tumor necrosis factor- converting enzyme, caspase-3 and mitogen activated kinases were elevated in the kidneys of TIMP3-/- but not TIMP2-/- mice, suggesting enhanced activation of apoptotic and pathological signaling pathways only in the obstructed kidney of TIMP3-/- mice. Thus, TIMP2 and TIMP3 play differential and contrasting roles in renal injury, TIMP3 protects from damage whereas TIMP2 promotes injury through MMP2 activation.

Publication Title

TIMP2 and TIMP3 have divergent roles in early renal tubulointerstitial injury.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon SRP048838
Single-Cell mRNA Sequencing Reveals Rare Intestinal Cell Types
  • organism-icon Mus musculus
  • sample-icon 34 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2500, NextSeq500

Description

Understanding the development and function of an organ requires the characterization of all of its cell types. Traditional methods for visualizing and isolating sub-populations of cells are based on mRNA or protein expression of only few known marker genes. The unequivocal identification of a specific marker gene, however, poses a major challenge, particularly if this cell type is rare. Identifying rare cell types, such as stem cells, short-lived progenitors, cancer stem cells, or circulating tumor cells is crucial to acquire a better understanding of normal or diseased tissue biology. To address this challenge we sequenced the transcriptome of hundreds of randomly selected cells from mouse intestinal organoids, cultured self-organizing epithelial structures that contain all cell lineages of the mammalian intestine. Organoid buds, like intestinal crypts, harbor stem cells that continuously differentiate into a variety of cell types, occurring at widely different abundances. Since available computational methods can only resolve more abundant cell types, we developed RaceID, an algorithm for rare cell type identification in complex populations of single cells. We demonstrate that this algorithm can resolve cell types represented by only a single cell in a population of randomly sampled organoid cells. We use this algorithm to identify Reg4 as a novel marker for enteroendocrine cells, a rare population of hormone producing intestinal cells. Next, we use Reg4 expression to enrich for these rare cells and investigate the heterogeneity within this population. Reassuringly, RaceID confirmed the existence of known enteroendocrine lineages, and moreover, discovered novel subtypes, which we subsequently validated in vivo. Having validated RaceID by this proof-of-principle experiment we then apply the algorithm to ex vivo isolated LGR5 positive cells and their direct progeny and demonstrate homogeneity of the stem cell pool. We envision broad applicability of our method for discovering rare cell types and the corresponding marker genes in healthy and diseased organs. Overall design: Small intestinal crypts were isolated from a single wild-type C57BL/6 mouse, a Reg4-dsRed-knock-in mouse and an Lgr5-GFP-DTR mouse. The crypts were propagated and expanded in culture as organoids. For each experiment, multiple organoids were harvested and dissociated into single cells. Each experiment was done twice, using different passage of the same organoid culture. We also included a pool-and-split control for 96 Reg4-dsRed positive intetsinal cells and a control library with 5 mouse embryonic stem cells (wells 1-5), 5 mouse embryonic fibroblasts (wells 6-10), 75 random organoid cells (wells 11-85), 5 wells without primer and without template (wells 86 and 93-96), and five wells with primer and without template (wells 87-92). We also sequenced two 96 well plates of Lgr5-EGFP positive single cells isolated ex vivo, and Lgr5 progeny collected after five days of lineage tracing. Label induction was performed using an Lgr5-Cre reporter mouse expressing YFP from Rosa26 promoter with a loxP flanked transcriptional road block in between. Five 96 well plates of YFP positive were sequenced. Sample number four also contains also unrelated samples (single cell barcode 49-96), which should be discarded.

Publication Title

Single-cell messenger RNA sequencing reveals rare intestinal cell types.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact