refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 7 of 7 results
Sort by

Filters

Technology

Platform

accession-icon GSE51014
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways
  • organism-icon Mus musculus, Danio rerio
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE51012
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

The mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart.

Publication Title

Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP030036
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways
  • organism-icon Danio rerio
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII

Description

The mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart. Overall design: 2 conditions, 4 biological replicates per condition

Publication Title

Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE51013
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways
  • organism-icon Danio rerio
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

The mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart.

Publication Title

Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP030037
Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

The mammalian heart has poor regenerative capacity following injury. In contrast, certain lower vertebrates such as zebrafish retain a robust capacity for regeneration into adult life. Here we use an integrated approach to identify evolutionary conserved regenerative miRNA-dependant regulatory circuits in the heart. We identified novel miRNA-dependant networks involved in critical biological pathways, which are differentially utilized between the infarcted mouse heart and the regenerating zebrafish heart. Overall design: 2 conditions, 3 biological replicates per condition

Publication Title

Comparative transcriptome profiling of the injured zebrafish and mouse hearts identifies miRNA-dependent repair pathways.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE22269
Expression data from Saccharomyces cerevisiae treated with Small Molecule Enhancers of Rapamycin (SMERs)
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

The target of rapamycin (TOR) plays a central role in eukaryotic cell growth control. With prevalent hyper-activation of the mTOR pathway in human cancers, novel strategies to enhance TOR pathway inhibition are highly desirable.

Publication Title

Chemical genetics screen for enhancers of rapamycin identifies a specific inhibitor of an SCF family E3 ubiquitin ligase.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19238
Expression data for 2 obese subjects from the SibPair cohort with a deletion on 16p11.2
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We report a highly-penetrant form of obesity, initially observed in 31 heterozygous carriers of a 593kb or larger deletion at 16p11.2 from amongst subjects ascertained for cognitive deficits. Nineteen similar deletions were identified from GWAS data in 16053 individuals from 8 European cohorts; such deletions was absent from healthy non-obese controls and accounted for 0.7% of our morbid obesity cases (p = 6.4x10-8, OR = 43). These findings highlight a promising strategy for identifying missing heritability in obesity and other complex traits, in which insights from rare extreme cases can be used to elucidate the basis for more common phenotypes.

Publication Title

A new highly penetrant form of obesity due to deletions on chromosome 16p11.2.

Sample Metadata Fields

Specimen part, Disease

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact