refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 3 of 3 results
Sort by

Filters

Technology

Platform

accession-icon GSE56941
SPROUTY2 target genes in human colon carcinoma cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The role of SPROUTY2 (SPRY2) in human colon cancer is controversial. Our data support a tumorigenic action of SPRY2. We use microarrays to identify SPRY2 target genes in human SW480 ADH colon carcinoma cell line.

Publication Title

SPROUTY-2 represses the epithelial phenotype of colon carcinoma cells via upregulation of ZEB1 mediated by ETS1 and miR-200/miR-150.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE55662
Plasticity of transcriptional regulation under antibiotic stress
  • organism-icon Escherichia coli k-12
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix E. coli Genome 2.0 Array (ecoli2)

Description

Evolution of antibiotic resistance in microbes is frequently achieved by acquisition of spontaneous mutations during antimicrobial therapy. Here we demonstrate that inactivation of a central regulator of iron homeostasis (fur) facilitates laboratory evolution of ciprofloxacin resistance in Escherichia coli. To decipher the underlying molecular mechanisms, we first performed a global transcriptome analysis and demonstrated a substantial reorganization of the Fur regulon in response to antibiotic treatment. We hypothesized that the impact of Fur on evolvability under antibiotic pressure is due to the elevated intracellular concentration of free iron and the consequent enhancement of oxidative damage-induced mutagenesis. In agreement with expectations, over-expression of iron storage proteins, inhibition of iron transport, or anaerobic conditions drastically suppressed the evolution of resistance, while inhibition of the SOS response-mediated mutagenesis had no such effect in fur deficient population. In sum, our work revealed the central role of iron metabolism in de novo evolution of antibiotic resistance, a pattern that could influence the development of novel antimicrobial strategies.

Publication Title

Perturbation of iron homeostasis promotes the evolution of antibiotic resistance.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58358
Polyunsaturated dietary fats decrease mortality and bacterial load during septic S. aureus infection, and improve neutrophil function in mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Severe infections and sepsis is an increasing clinical problem that cause prolonged morbidity and substantial mortality. At present, antibiotics are essentially the only pharmacological treatment for sepsis. The incidence of antibiotic resistance is increasing and it is therefore critical to find new therapies for sepsis. Staphylococcus aureus (S. aureus) is a major cause of septic mortality. Neutrophils play a major role in defense against bacterial infections. We have recently shown that a saturated high fat diet decreases survival in septic mice, but the mechanisms behind remain elusive. The aim of the present study was to investigate how the dietary fat composition affects survival and neutrophils function after experimental septic infection in mice. We found that, after S. aureus infection, mice fed polyunsaturated high fat diet (HFD/P) for 8 weeks had increased septic survival and decreased bacterial load compared with mice fed saturated HFD (HFD/S), and similar to that of mice given low fat diet (LFD). Furthermore, uninfected mice fed HFD/P had increased number of Ly6G+ neutrophils in bone marrow. In addition, mice fed HFD/P had a higher number Ly6G+ neutrophils recruited to the site of inflammation after peritoneal injection of thioglycollate. In conclusion, polyunsaturated dietary fat increased both survival and the efficiency of the bacterial clearance during septic S. aureus infection. Moreover, this diet enhanced the number and chemotaxis of neutrophils, a key component of the immune response to S. aureus infections.

Publication Title

Dietary polyunsaturated fatty acids increase survival and decrease bacterial load during septic Staphylococcus aureus infection and improve neutrophil function in mice.

Sample Metadata Fields

Sex, Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact