refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 98 results
Sort by

Filters

Technology

Platform

accession-icon GSE70901
Generation of Stem Cell-Derived Cells from Type 1 Diabetic Patients
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

We recently reported the scalable in vitro production of functional stem cell-derived cells. Here we extend this approach to generate SC- cells from Type 1 diabetic patients (T1D), a cell type that is destroyed during disease progression and has not been possible to extensively study. These cells express cell markers, respond to glucose both in vitro and in vivo, prevent alloxan-induced diabetes in mice, and respond to anti-diabetic drugs. Furthermore, we use an in vitro disease model to demonstrate the cells respond to different forms of cell stress. Using these assays, we find no major differences in T1D SC- cells compared to SC- cells derived from non-diabetic patients (ND). These results show that T1D SC- cells can be used for the treatment of diabetes, drug screening, and the study of cell biology.

Publication Title

Generation of stem cell-derived β-cells from patients with type 1 diabetes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61714
Generation of functional human pancreatic beta cells in vitro
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The generation of insulin-producing pancreatic cells from stem cells in vitro would provide an unprecedented cell source for drug discovery and cell transplantation therapy in diabetes. However, insulin-producing cells previously generated from human pluripotent stem cells (hPSC) lack many functional characteristics of bona fide cells. Here we report a scalable differentiation protocol that can generate hundreds of millions of glucose-responsive cells from hPSC in vitro. These stem cell derived cells (SC) express markers found in mature cells, flux Ca2+ in response to glucose, package insulin into secretory granules and secrete quantities of insulin comparable to adult cells in response to multiple sequential glucose challenges in vitro. Furthermore, these cells secrete human insulin into the serum of mice shortly after transplantation in a glucose-regulated manner, and transplantation of these cells ameliorates hyperglycemia in diabetic mice.

Publication Title

Generation of functional human pancreatic β cells in vitro.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon SRP145862
Charting in vitro beta cell differentiation by single cell RNA sequencing
  • organism-icon Homo sapiens
  • sample-icon 72 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

In vitro differentiation of human stem cells can produce pancreatic beta cells, the insulin-secreting cell type whose loss underlies Type 1 Diabetes. As a step towards mastery of this process, we report on transcriptional profiling of >100,000 individual cells sampled during in vitro beta cell differentiation and describe the cells that emerge. We resolve populations corresponding to beta cells, alpha-like poly-hormonal cells, non-endocrine cells that resemble pancreatic exocrine cells and a previously unreported population resembling enterochromaffin cells. We show that the beta and alpha-like cells are stable for weeks in culture without exogenous growth factors and that gene expression changes associated with in vivo beta cell maturation are recapitulated in vitro. We demonstrate that stem-cell derived enterochromaffin cells can synthesize and secrete serotonin in vitro. To remove exocrine cells, we characterize a scalable re-aggregation technique that efficiently selects endocrine cells. Finally, we use a high-resolution sequencing time course to characterize gene expression dynamics during human pancreatic endocrine induction from which we develop a lineage model of in vitro beta cell differentiation. This study provides a deeper perspective on the current state of human stem cell differentiation and is a jumping-off point for future endeavors in in vitro differentiation of pancreatic islet cells and their application in regenerative medicine. Overall design: Single-cell mRNA sequencing of pluripotent stem cells differentiating in vitro towards pancreatic beta cells. The data & metadata match the initial submission of the manuscript, not the final version.

Publication Title

Charting cellular identity during human in vitro β-cell differentiation.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE42299
Expression profiles of C2C12 myotubes in response to PGC-1 (peroxisome proliferator-activated receptor gamma, coactivator 1 alpha) overexpression and/or iron chelation
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mitochondria are centers of metabolism and signaling whose content and function must adapt to changing cellular environments. The biological signals that initiate mitochondrial restructuring and the cellular processes that drive this adaptive response are largely obscure. To better define these systems, we performed matched quantitative genomic and proteomic analyses of mouse muscle cells as they performed mitochondrial biogenesis. We find that proteins involved in cellular iron homeostasis are highly coordinated with this process, and that depletion of cellular iron results in a rapid, dose-dependent decrease of select mitochondrial protein levels and oxidative capacity. We further show that this process is universal across a broad range of cell types and fully reversed when iron is reintroduced. Collectively, our work reveals that cellular iron is a key regulator of mitochondrial biogenesis, and provides quantitative datasets that can be leveraged to explore post-transcriptional and post-translational processes that are essential for mitochondrial adaptation.

Publication Title

Complementary RNA and protein profiling identifies iron as a key regulator of mitochondrial biogenesis.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE55617
Gene expression of liver tissue from Pcyt2 mice
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

Pcyt2 defient mice has metabolic syndrome and insulin resistance. We used microarray to study the gene expression of these mice to

Publication Title

Male-Specific Cardiac Dysfunction in CTP:Phosphoethanolamine Cytidylyltransferase (Pcyt2)-Deficient Mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE53123
Expression data from MOLT-4 and CCRF-CEM cells grown in serum free medium, untreated, treated with direct (A-769662) and indirect (AICAR) AMPK activators.
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Two human acute lymphoblastic leukemia cell lines (Molt-4 and CCRF-CEM) were treated with direct (A-769662) and indirect (AICAR) AMPK activators. Molt-4 and CCRF-CEM cells were obtained from ATCC (CRL-1582 and CCL-119). Control samples were used for the analysis of metabolic differences between cell lines. Therefore the data was analyzed in combination with, metabolomic data, and the genome-scale reconstruction of human metabolism. For experiments cells were grown in serum-free medium containing DMSO (0.67%) at a cell concentration of 5 x 105 cells/mL.

Publication Title

Prediction of intracellular metabolic states from extracellular metabolomic data.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE56492
Identification of targets regulated by MLL1 in response to HSP90 inhibitors
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

MLL1 WT or KO MEF with and without HSP90 inhibitor treatment

Publication Title

Identification of mixed lineage leukemia 1(MLL1) protein as a coactivator of heat shock factor 1(HSF1) protein in response to heat shock protein 90 (HSP90) inhibition.

Sample Metadata Fields

Treatment

View Samples
accession-icon GSE41802
Isocitrata Dehydrogenase (IDH) Mutations Promote a Reversible ZEB1/mir-200-Dependent Epithelial Mesenchymal Transition (EMT)
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Mutations in the genes encoding isocitrate dehydrogenase 1 and 2 (IDH1/2) occur in a variety of tumor types, resulting in production of the proposed oncometabolite, 2-hydroxyglutarate (2-HG). How mutant IDH and 2-HG alter signaling pathways to promote cancer, though, remains unclear. Additionally, there exist relatively few cell lines with IDH mutations. To examine the effect of endogenous IDH mutations and 2-HG, we created a panel of isogenic epithelial cell lines with either wild-type IDH1/2 or clinically relevant IDH1/2 mutations. Differences were noted in the ability of IDH mutations to cause robust 2-HG accumulation. IDH1/2 mutants that produce high levels of 2-HG cause an epithelial-mesenchymal transition (EMT)-like phenotype, characterized by changes in EMT-related gene expression and cellular morphology. 2-HG is sufficient to recapitulate aspects of this phenotype in the absence of an IDH mutation. In the cells types examined, mutant IDH-induced EMT is dependent on upregulation of the transcription factor ZEB1 and downregulation of the mir-200 family of microRNAs. Furthermore, sustained knockdown of IDH1 in IDH1 R132H mutant cells is sufficient to reverse many characteristics of EMT, demonstrating that continued expression of mutant IDH is required to maintain this phenotype. These results suggest mutant IDH proteins can reversibly deregulate discrete signaling pathways that contribute to tumorigenesis

Publication Title

Isocitrate dehydrogenase (IDH) mutations promote a reversible ZEB1/microRNA (miR)-200-dependent epithelial-mesenchymal transition (EMT).

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE60771
Testing gene expression changes in VCaP upon depletion of the mutated ETS transcription factor ERG
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

VCaP cells expressing inducible shRNAs for either ERG or a non-targeting control were treated with Doxycycline for 1, 3, 7 and 10 days prior to collection

Publication Title

TMPRSS2:ERG blocks neuroendocrine and luminal cell differentiation to maintain prostate cancer proliferation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP046010
Investigating gene expression changes in wildtype and TMPRSS2-ERG homozygous mouse prostate tissue
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

A transgenic TMPRSS2:ERG mouse model was engineered in FVB background and compared to its wildtype counterpart in the absence of any treatment This experiment is designed to look at ERG-dependent changes in phenotype and gene expression Overall design: A loxP-GFP-loxP-hERG exon 4-11 cassette was inserted into a BAC clone containing the TMPRSS2 locus using a recombineering kit. This modified BAC was used for pronuclear injection and generation of germline-transmitting mice. One line expressing high GFP was used for pronuclear injection of Cre protein and one sub-line that transmitted the TMPRSS2:ERG transgene into the germline was subsequently bred to homozygosity.

Publication Title

TMPRSS2:ERG blocks neuroendocrine and luminal cell differentiation to maintain prostate cancer proliferation.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact