refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 8 of 8 results
Sort by

Filters

Technology

Platform

accession-icon GSE29916
Functional studies of a H2A.Bbd-like histone variant in mouse spermatogenesis
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A unique H2A histone variant occupies the transcriptional start site of active genes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE29781
Expression data from 30do mouse spermatid [Affymetrix]
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Chromatin performs numerous functions during cellular differentiation, and therefore it must be capable of adopting a multitude of different structures. How these various structures are established is poorly understood, but we propose that specific histone H2A variants will have a key role in remodelling chromatin during differentiation. Structurally, we show here that the gain of just a single acidic amino acid residue has generated a new mouse H2A.Bbd-like histone variant, H2A.Lap1, and that when incorporated into nucleosomal arrays imparts on them unique biophysical properties that are distinct from arrays containing either H2A or human H2A.Bbd. Functionally, we identify H2A.Lap1 as a novel chromatin component of active genes that are expressed during spermatogenesis, and in combination with H2A.Z create a unique chromatin landscape at the start site of transcription. During round spermatid differentiation, H2A.Lap1 dramatically loads onto the inactive X chromosome enabling a subset of its genes to be transcriptionally activated.

Publication Title

A unique H2A histone variant occupies the transcriptional start site of active genes.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE45147
Hemangioblast skewing from embryonic stem(ES) cells by defined factors
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Successful derivation of a specific cell lineage from pluripotent stem cells will tremendously facilitate the clinical usage of pluripotent stem derived somatic cells. Herein, we demonstrate that ER71/Etv2, GATA2 and Scl form a core network in hemangioblast development and that transient co-expression of these three factors robustly induced hemangioblasts from ES cells. Such induced hemangioblasts potently generated hematopoietic and endothelial cells in culture as well as in vivo, warranting the evaluation of these cells in the future for repairing and/or regenerating hematopoietic and/or angiogenic defects.

Publication Title

Enhanced hemangioblast generation and improved vascular repair and regeneration from embryonic stem cells by defined transcription factors.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE61861
Defined conditions for the isolation and expansion of basal prostate stem cells of mouse and human origin
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina MouseWG-6 v2.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Defined conditions for the isolation and expansion of basal prostate progenitor cells of mouse and human origin.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE61860
Defined conditions for the isolation and expansion of basal prostate stem cells of mouse and human origin [mouse]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Isolation and culture of primary prostate epithelial stem/progenitor cells (PESC) has been proven difficult and ineffective. Here we present methods to grow and expand both murine and human basal PESCs long-term in serum- and feeder-free conditions. The method enriches for adherent mouse basal PESCs with a Lin-Sca1+ CD49f+Trop2high phenotype. Progesterone and sodium selenite are additionally required for the growth of human Lin-CD49f+Trop2high PESCs. The gene expression profiles of expanded basal PESCs show similarities to ES cells and Lamin B1 and PRDX1 were identified as novel PESC markers. If transplanted in combination with urogenital sinus mesenchyme, expanded mouse and human PESCs generate ectopic prostatic tubules demonstrating their stem cell activity in vivo. The novel methods will facilitate the cellular, molecular and genomic characterization of normal and pathologic prostate glands of mouse and human origin.

Publication Title

Defined conditions for the isolation and expansion of basal prostate progenitor cells of mouse and human origin.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61859
Defined conditions for the isolation and expansion of basal prostate stem cells of mouse and human origin [human]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip, Illumina MouseWG-6 v2.0 expression beadchip

Description

Isolation and culture of primary prostate epithelial stem/progenitor cells (PESC) has been proven difficult and ineffective. Here we present methods to grow and expand both murine and human basal PESCs long-term in serum- and feeder-free conditions. The method enriches for adherent mouse basal PESCs with a Lin-Sca1+ CD49f+Trop2high phenotype. Progesterone and sodium selenite are additionally required for the growth of human Lin-CD49f+Trop2high PESCs. The gene expression profiles of expanded basal PESCs show similarities to ES cells and Lamin B1 and PRDX1 were identified as novel PESC markers. If transplanted in combination with urogenital sinus mesenchyme, expanded mouse and human PESCs generate ectopic prostatic tubules demonstrating their stem cell activity in vivo. The novel methods will facilitate the cellular, molecular and genomic characterization of normal and pathologic prostate glands of mouse and human origin.

Publication Title

Defined conditions for the isolation and expansion of basal prostate progenitor cells of mouse and human origin.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon GSE30762
Mouse expression analysis
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Comparison between APPPS1-FVB and APPPS1-FVBxABCC1ko mice

Publication Title

Cerebral amyloid-β proteostasis is regulated by the membrane transport protein ABCC1 in mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP169509
A platform for generation of chamber specific cardiac tissues and disease modelling
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

We report, for the first time, engineering of heteropolar cardiac tissues containing distinct atrial and ventricular ends, and demonstrate their spatially confined responses to serotonin and ranolazine. Uniquely, electrical conditioning for up to 8 months enabled modeling of polygenic left ventricular hypertrophy starting from patient cells. Overall design: hiPSC-CMs from 3 affected (Left Ventricular Hypertrophy [LVH]) and 3 non-affected donors were sequenced using ThermoFisher's whole transcriptome targeted AmpliSeq assay

Publication Title

A Platform for Generation of Chamber-Specific Cardiac Tissues and Disease Modeling.

Sample Metadata Fields

Specimen part, Disease, Subject

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact