refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 587 results
Sort by

Filters

Technology

Platform

accession-icon GSE36140
SNF5 is an essential executor of epigenetic regulation in pluripotency and differentiation
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

SNF5 is an essential executor of epigenetic regulation during differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE44250
Gene expression analysis of rice seedling under potassium deprivation
  • organism-icon Oryza sativa indica group
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Rice Genome Array (rice)

Description

Potassium is one of the essential macronutrients required for plant growth and development. It plays a major role in different physiological processes like cell elongation, stomatal movement, turgor regulation, osmotic adjustment, and signal transduction by acting as a major osmolyte and component of the ionic environment in the cytosol and subcellular organelles.

Publication Title

Gene expression analysis of rice seedling under potassium deprivation reveals major changes in metabolism and signaling components.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon GSE35909
Genome-wide analysis of human pluripotent cells after kd/oe of SNF5
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Analysis of global gene expression by SNF5 level change in human pluripotent and differentiated cells. The core subunit of BAF complex SNF5 is at the nexus of the link between chromatin remodeling and tumor suppression. We demonstrated a role for the remodeler SNF5 as a key executor in regulating pluripotency gene networks during differentiation by using loss and gain of function experiments followed by gene-expression arrays.

Publication Title

SNF5 is an essential executor of epigenetic regulation during differentiation.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE20193
Altered levels of MOF and decreased levels of H4K16ac correlate with a defective DNA damage response (DDR).
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Full title: Altered levels of MOF (member of MYST family histone acetyl transferase) and decreased levels of H4K16ac correlate with a defective DNA damage response (DDR).

Publication Title

MOF and histone H4 acetylation at lysine 16 are critical for DNA damage response and double-strand break repair.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE40433
A549 cells before/after NME2 induction
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Promoter 1.0R Array (hsprompr), Illumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Promoter-proximal transcription factor binding is transcriptionally active when coupled with nucleosome repositioning in immediate vicinity.

Sample Metadata Fields

Specimen part, Disease, Cell line

View Samples
accession-icon GSE18182
Expression profile of lung adenocarcinoma, A549 cells following targeted depletion of non metastatic 2 (NME2/NM23 H2)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Non-metastatic 2 (NME2) is an established metastases suppressor in multiple human cancer types. However, the molecular mechanisms of NME2 action remain insufficiently resolved. We recently validated the transcription regulatory activity of NME2 with respect to control of proto-oncogene c-MYC expression. We hypothesized that large scale transcriptional potential of NME2 may be at the core of metastases suppression by NME2. Using a combination of high throughput genomic assays such as chromatin immunoprecipitation coupled to promoter array hybridization (ChIP-chip) and gene expression profiling, we characterized the transcriptional roles of NME2. Specifically, we found a set of NME2 target genes which changed expression upon selective depletion of NME2 in a lung cancer cell line, A549. The analysis of gene expression suggested control of various biological pathways esp. cell adhesion and apoptosis by NME2 target genes which could be important in regulation of metastases.

Publication Title

Promoter-proximal transcription factor binding is transcriptionally active when coupled with nucleosome repositioning in immediate vicinity.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE40194
Expression profile of lung adenocarcinoma, A549 cells following induction of non metastatic 2 (NME2/NM23 H2)
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

It is widely believed that reorganization of nucleosomes result in availability of binding sites that engage transcription factors during eukaryotic gene regulation. Recent findings, on the other hand, suggest that transcription factors induced as a result of physiological perturbations directly (or in association with chromatin modifiers) may alter nucleosome occupancy to facilitate DNA binding. Although, together these suggest a close relationship between transcription factor binding and nucleosome reorganization, the nature of the inter-dependency, or to what extent it influences regulatory transcription is not clear. Moreover, since most studies used physiolgical pertubations that induced multiple transcription factor chromatin modifiers, the relatively local (or direct) effect of transcription factor binding on nucleosome occupancy remains unclear. With these in mind, we used a single transcription factor to induce physiological changes, representing metastatic (aggressive cancer) and the corresponding non-metastatic state, in human cancer cells. Following characterization of the two states (before and after induction of the transcription factor) we determined: (a) genome wide binding sites of the transcription factor, (b) promoter nucleosome occupancy and (c) transcriptome profiles, independently in both conditions. Interestingly, we find only ~20% of TF binding results from nucleosome reorganization - however, almost all corresponding genes were transcriptionally altered. Whereas, in cases where TF-occupancy was independent of nucleosome repositioning (in close vicinity), or co-occurred with nucleosomes, only a small fraction of the corresponding genes were expressed/repressed. Together, these indicate a model where TF occupancy only when coupled with nucleosome repositioning in close proximity is transcriptionally active. This, to our knowledge, for the first time also helps explain why genome wide TF occupancy (e.g., from ChIP-seq) is typically associated with only a small fraction of genes that change expression.

Publication Title

Promoter-proximal transcription factor binding is transcriptionally active when coupled with nucleosome repositioning in immediate vicinity.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE69540
Expression data from MCF7 cells treated with Neuregulin (NRG) at different times
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

To gain insights into the mechanism responsible for the protumorigenic actions of NRG we performed gene expression analyses of MCF7 cells treated with soluble NRG for 3, 6, 12 and 24 hours.

Publication Title

Breast cancer dissemination promoted by a neuregulin-collagenase 3 signalling node.

Sample Metadata Fields

Age, Specimen part, Disease, Cell line, Treatment, Time

View Samples
accession-icon SRP110714
Transcription factor Foxo1 is essential for IL-9 induction in T helper cells
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Interleukin 9 (IL-9) producing helper T (Th9) cells play a crucial role in allergic inflammation, autoimmunity, immunity to extracellular pathogens and anti-tumor immune response. In addition to Th9, Th2, Th17 and Foxp3+ Treg cells produce IL-9. Transcription factor that is critical for IL-9 induction in Th2, Th9 and Th17 cells has not been identified. Here we show that Foxo1, a forkhead family transcription factor, requires for IL-9 induction in Th9 and Th17 cells. We further show that inhibition of AKT enhances IL-9 induction in Th9 cells while it reciprocally regulates IL-9 and IL-17 in Th17 cells via Foxo1. Mechanistically, Foxo1 binds and transactivates IL-9 and IRF4 promoters in Th9, Th17 and iTregs. Furthermore, loss of Foxo1 attenuates IL-9 in mouse and human Th9 and Th17 cells, and ameliorates allergic inflammation in asthma. Our findings thus identify that Foxo1 is essential for IL-9 induction in Th9 and Th17 cells. Overall design: Transcriptional analysis of Th0 and TGF-beta 1 + IL-4 induced Th9 cells

Publication Title

Transcription factor Foxo1 is essential for IL-9 induction in T helper cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE29083
Knockout of heterotrimeric signaling G protein beta5 impaires brain development and causes severe neurologic dysfunction in mice
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Knockout of G protein β5 impairs brain development and causes multiple neurologic abnormalities in mice.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact