refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 231 results
Sort by

Filters

Technology

Platform

accession-icon GSE39030
Impact of ectopic expression of SNAIL2, ZEB2, ZEB1 or TWIST1 on BRAF-target genes in the murine melanocytic melan-a cell line
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We have demonstrated that the oncogenic activation of B-RAF (using a truncated delta-BRAF-ER version inducible with tamoxifen) in the melan-a melanocyte cell line triggers the activation of Zeb1 and Twist1 at the expanse of Zeb2 and Snail2. Enforced maintenance of Zeb2 or Snail2 expression reduces the B-RAF oncogenic potential while ectopic expression of Zeb1 or Twist1 cooperates with B-RAF in melan-a cell transformation. To get an insight into the properties of these embryonic transcription factors, gene expression profiles of melan-a-derived cell lines either expressing a non-activated B-RAF (- tamoxifen) or an activated BRAF (+ tamoxifen) alone or in combination with Snail2, Zeb2, Twist1 or Zeb1 have been established.

Publication Title

A switch in the expression of embryonic EMT-inducers drives the development of malignant melanoma.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE59485
Expression data from bovine nucleus pulposus interverteral disc cells
  • organism-icon Bos taurus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

Assessment of the putative differential gene expression profiles in high osmolality-treated bovine nucleus pulposus intervertebral disc cells for a short (5 h) and a long (24 h) time period. Identification of novel genes up- or down-regulated as an early or a late response to hyperosmotic stress.

Publication Title

Deficiency in the α1 subunit of Na+/K+-ATPase enhances the anti-proliferative effect of high osmolality in nucleus pulposus intervertebral disc cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP065840
Genetic Diversity Through RNA Editing: Apobec1-mediated RNA editing in bulk and single cell macrophages and dendritic cells
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNA editing is a mutational mechanism that specifically alters the nucleotide content in sets of transcripts while leaving their cognate genomic blueprint intact. Editing has been detected from bulk RNA-seq data in thousands of distinct transcripts, but apparent editing rates can vary widely (from under 1% to almost 100%). These observed editing rates could result from approximately equal rates of editing within each individual cell in the bulk sample, or alternatively, editing estimates from a population of cells could reflect an average of distinct, biologically significant editing signatures that vary substantially between individual cells in the population. To distinguish between these two possibilities we have constructed a hierarchical Bayesian model which quantifies the variance of editing rates at specific sites using RNA-seq data from both single cells and a cognate bulk sample consisting of ~ 106 cells. The model was applied to data from murine bone-marrow derived macrophages and dendritic cells, and predicted high variance for specific edited sites in both cell types tested. We then 1 validated these predictions using targeted amplification of specific editable transcripts from individual macrophages. Our data demonstrate substantial variance in editing signatures between single cells, supporting the notion that RNA editing generates diversity within cellular populations. Such editing-mediated RNA-level sequence diversity could contribute to the functional heterogeneity apparent in cells of the innate immune system. Overall design: 26 samples were subjected to RNA-seq: 24 single WT macrophages, and 2 bulk samples (Apobec1 WT and KO macrophages), consisting of 500,000-1 million cells each.

Publication Title

RNA editing generates cellular subsets with diverse sequence within populations.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE139601
Transcriptomic profiling of the white adipose tissue (WAT) in ApoE3L.CETP mice fed a high fat diet (HFD) or a low fat diet (LFD) for three different time periods, or chow diet at baseline
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The metabolic syndrome (MetS) is characterized by the presence of metabolic abnormalities that include abdominal obesity, dyslipidemia, hypertension, increased blood glucose/insulin resistance, hypertriglyceridemia and increased risk for cardiovascular disease (CVD). The ApoE*3Leiden.human Cholesteryl Ester Transfer Protein (ApoE3L.CETP) mouse model manifests several features of the MetS upon high fat diet (HFD) feeding. Moreover, the physiological changes in the white adipose tissue (WAT) contribute to MetS comorbidities. The aim of this study was to identify transcriptomic signatures in the gonadal WAT of ApoE3L.CETP mice in discrete stages of diet-induced MetS.

Publication Title

Transcriptome analysis of the adipose tissue in a mouse model of metabolic syndrome identifies gene signatures related to disease pathogenesis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP064115
Dual function of Med12 in PRC1-dependent gene repression and ncRNA-mediated transcriptional activation
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Mediator is regarded a general co-activator of RNA-Polymerase II dependent transcription but not much is known about its function and regulation in mouse pluripotent embryonic stem cells (mESC). One means of controlling Mediator function is provided by binding of the Cdk8 module (Med12, Cdk8, Ccnc and Med13) to Mediator. Here we report that the Cdk8 module subunit Med12 operates together with PRC1 to silence developmental key genes in the pluripotent state. At the molecular level, PRC1 is required to assemble ncRNA containing Med12-Mediator complexes at promoters of repressed genes. In the course of cellular differentiation the H2A-ubiquitin binding protein Zrf1 abrogates PRC1-Med12 binding and facilitates the recruitment of Cdk8 into Mediator. Remodeling of the Mediator-associated protein complex converts Mediator into a transcriptional enhancer that mediates ncRNA-dependent activation of Polycomb target genes Overall design: RNAseq of pluripotent (control, shNMC, shRing1b, shMed12, shCdk8, shZrf1) and early differentiating (control, shNMC, shMed12, shCdk8, shZrf1) stem cells in triplicates. Control would be normal E14TG2A mESCs. shNMC refers to E14TG2A cells stably transfected with a short hairpin that has no mammalian targets (Non Mammalian Control). All the other samples are indeed stably transfected with short hairpins against the indicated genes.

Publication Title

Dual role of Med12 in PRC1-dependent gene repression and ncRNA-mediated transcriptional activation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE15287
Transcriptomic computational analysis of mastic oil-treated Lewis lung carcinomas
  • organism-icon Mus musculus
  • sample-icon 40 Downloadable Samples
  • Technology Badge IconIllumina Mouse Ref-6 V1

Description

Mastic oil from Pistacia lentiscus variation chia, a blend of bioactive terpenes with recognized medicinal properties, has been recently shown to exert anti-tumor activity. Lewis lung carcinoma (LLC) cells are mastic oil-susceptible cells and were used in this work to study the effects of mastic oil at the transcriptomic level.

Publication Title

A transcriptomic computational analysis of mastic oil-treated Lewis lung carcinomas reveals molecular mechanisms targeting tumor cell growth and survival.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP057495
TAF10 interacts with the GATA1 transcription factor and controls mouse erythropoiesis
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We have ablated TAF10 in the erythroid compartment only by crossing the TAF10lox mice with the EpoR-Cre mice and we have studied the development of the erythroid cells in vivo. TAF10 ablation led to embryonic death at E13.5 while at E12.5 there was a clear developmental defect which was reflected in the transcriptional profile of the fetal liver cells. Gata1-target genes were mostly affected and were responsible for the lethal phenotype. Overall design: mRNA from E12.5 fetal livers of TAF10lox/KO:EpoR-Cre+/- (TAF10KO) mice, TAF10HET and WT mice was profiled by NGS (Illumina).

Publication Title

TAF10 Interacts with the GATA1 Transcription Factor and Controls Mouse Erythropoiesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP079189
Dysregulated synaptic gene expression and axonal neuropathology in a human iPSC-based model of familial Parkinson''s disease
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We generated de novo induced pluripotent stem cells (iPSCs) from two Parkinson’s Disease patients (PD) harboring the p.A53T mutation. iPSC-derived mutant neurons displayed disease-relevant phenotypes at basal conditions, including protein aggregation, compromised neuritic outgrowth and contorted axons with swollen varicosities containing aSyn and tau. We have performed RNA Sequencing (RNA-Seq) of neurons from PD patient and control samples. RNA sequencing has also been performed to neurons derived from HUES samples subjected to the same differentiation protocol as reference. Overall design: We have performed RNA Sequencing (RNA-Seq) in neurons PD and control samples (two clones from each individual), along with HUES-derived neurons.

Publication Title

Defective synaptic connectivity and axonal neuropathology in a human iPSC-based model of familial Parkinson's disease.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE103615
Genome-wide profiling of genes during differentiation of wild type (WT) murine embryonic stem cells (ESCs), scrambled control (SCR) ESCs and Mageb16-depleted (KD) ESCs
  • organism-icon Mus musculus
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The Melanoma-associated Antigen gene family (MAGE) generally encodes for tumour antigens. We recently have identified one of the MAGE gene members, Mageb16 to be highly expressed in undifferentiated murine embryonic stem cells (mESCs). The role of Mageb16 for the differentiation of the pluripotent stem cells is completely unknown. Here we demonstrate that Mageb16 (41 kDa) is distributed in cytosol and/or in surface membrane in undifferentiated mESCs. A transcriptome study was performed with differentiated short hairpin RNA (shRNA)-mediated Mageb16 knockdown (KD ESCs) and scrambled control (SCR) ESCs until a period of 22 days. Mageb16 KD ESCs mainly differentiated towards mesodermal derivatives such as cardiovascular lineages. Mesoderm-oriented differentiation initiated biological processes such as adipogenesis, osteogenesis, limb morphogenesis and spermatogenesis were significantly enriched in the differentiated Mageb16 KD ESCs. Cardiomyogenesis in differentiated KD mESCs was stronger when compared to differentiated SCR and wild mESCs. The expression of non-coding RNA (ncRNA) Lin28a and other epigenetic regulatory genes, nucleocytoplasmic trafficking and genes participating in spermatogenesis have also declined faster in the differentiating Mageb16 KD ESCs. We conclude that Mageb16 plays a crucial role for differentiation of ESCs, specifically to the mesodermal lineages. Regulative epigenetic networks and nucleocytoplasmic modifications induced by Mageb16 may play a role for the critical role of Mageb16 for the ESCs differentiation.

Publication Title

Depletion of Mageb16 induces differentiation of pluripotent stem cells predominantly into mesodermal derivatives.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE26703
Determining the Program of Leydig Cell Development
  • organism-icon Rattus norvegicus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

In the present study, microarray analysis was performed on RNA isolated from purified SLCs, PLCs, ILCs, ALCs and bone stem cells, using Affymetrix Rat Genome RAE230 2.0 arrays which monitor ~30,000 transcripts from over ~28,000 well-substantiated genes. The focus is on the differences and similarities between SLCs and bone stem cells, and between SLCs and PLCs, ILCs and ALCs

Publication Title

Stem Leydig cell differentiation: gene expression during development of the adult rat population of Leydig cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact