refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 231 results
Sort by

Filters

Technology

Platform

accession-icon SRP065840
Genetic Diversity Through RNA Editing: Apobec1-mediated RNA editing in bulk and single cell macrophages and dendritic cells
  • organism-icon Mus musculus
  • sample-icon 26 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

RNA editing is a mutational mechanism that specifically alters the nucleotide content in sets of transcripts while leaving their cognate genomic blueprint intact. Editing has been detected from bulk RNA-seq data in thousands of distinct transcripts, but apparent editing rates can vary widely (from under 1% to almost 100%). These observed editing rates could result from approximately equal rates of editing within each individual cell in the bulk sample, or alternatively, editing estimates from a population of cells could reflect an average of distinct, biologically significant editing signatures that vary substantially between individual cells in the population. To distinguish between these two possibilities we have constructed a hierarchical Bayesian model which quantifies the variance of editing rates at specific sites using RNA-seq data from both single cells and a cognate bulk sample consisting of ~ 106 cells. The model was applied to data from murine bone-marrow derived macrophages and dendritic cells, and predicted high variance for specific edited sites in both cell types tested. We then 1 validated these predictions using targeted amplification of specific editable transcripts from individual macrophages. Our data demonstrate substantial variance in editing signatures between single cells, supporting the notion that RNA editing generates diversity within cellular populations. Such editing-mediated RNA-level sequence diversity could contribute to the functional heterogeneity apparent in cells of the innate immune system. Overall design: 26 samples were subjected to RNA-seq: 24 single WT macrophages, and 2 bulk samples (Apobec1 WT and KO macrophages), consisting of 500,000-1 million cells each.

Publication Title

RNA editing generates cellular subsets with diverse sequence within populations.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP150775
Self-organization and symmetry breaking in intestinal organoid development [scRNA-Seq]
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Intestinal organoids are complex three-dimensional structures that mimic cell type composition and tissue organization of the intestine by recapitulating the self-organizing capacity of cell populations derived from a single stem cell. Crucial in this process is a first symmetry-breaking event, in which only a fraction of identical cells in a symmetrical cyst differentiate into Paneth cells, which in turn generates the stem cell niche and leads to asymmetric structures such as crypts and villi. We here combine a quantitative single-cell gene expression and imaging approach to characterize the development of intestinal organoids from a single cell. We show that intestinal organoid development follows a regeneration process driven by transient Yap1 activation. Cell-to-cell variability in Yap1, emerging in symmetrical cysts, initiates a Notch/Dll1 lateral inhibition event driving the symmetry-breaking event and the formation of the first Paneth cell. Our findings reveal how single cells exposed to a uniform growth-promoting environment have the intrinsic ability to generate emergent, self-organized behavior resulting in the formation of complex multicellular asymmetric structures. Overall design: Single cell RNA sequencing of single cells isolated from intestinal organoids day3 and intestinal organoids day 5

Publication Title

Self-organization and symmetry breaking in intestinal organoid development.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE59485
Expression data from bovine nucleus pulposus interverteral disc cells
  • organism-icon Bos taurus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Bovine Genome Array (bovine)

Description

Assessment of the putative differential gene expression profiles in high osmolality-treated bovine nucleus pulposus intervertebral disc cells for a short (5 h) and a long (24 h) time period. Identification of novel genes up- or down-regulated as an early or a late response to hyperosmotic stress.

Publication Title

Deficiency in the α1 subunit of Na+/K+-ATPase enhances the anti-proliferative effect of high osmolality in nucleus pulposus intervertebral disc cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE139601
Transcriptomic profiling of the white adipose tissue (WAT) in ApoE3L.CETP mice fed a high fat diet (HFD) or a low fat diet (LFD) for three different time periods, or chow diet at baseline
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The metabolic syndrome (MetS) is characterized by the presence of metabolic abnormalities that include abdominal obesity, dyslipidemia, hypertension, increased blood glucose/insulin resistance, hypertriglyceridemia and increased risk for cardiovascular disease (CVD). The ApoE*3Leiden.human Cholesteryl Ester Transfer Protein (ApoE3L.CETP) mouse model manifests several features of the MetS upon high fat diet (HFD) feeding. Moreover, the physiological changes in the white adipose tissue (WAT) contribute to MetS comorbidities. The aim of this study was to identify transcriptomic signatures in the gonadal WAT of ApoE3L.CETP mice in discrete stages of diet-induced MetS.

Publication Title

Transcriptome analysis of the adipose tissue in a mouse model of metabolic syndrome identifies gene signatures related to disease pathogenesis.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon SRP079189
Dysregulated synaptic gene expression and axonal neuropathology in a human iPSC-based model of familial Parkinson''s disease
  • organism-icon Homo sapiens
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We generated de novo induced pluripotent stem cells (iPSCs) from two Parkinson’s Disease patients (PD) harboring the p.A53T mutation. iPSC-derived mutant neurons displayed disease-relevant phenotypes at basal conditions, including protein aggregation, compromised neuritic outgrowth and contorted axons with swollen varicosities containing aSyn and tau. We have performed RNA Sequencing (RNA-Seq) of neurons from PD patient and control samples. RNA sequencing has also been performed to neurons derived from HUES samples subjected to the same differentiation protocol as reference. Overall design: We have performed RNA Sequencing (RNA-Seq) in neurons PD and control samples (two clones from each individual), along with HUES-derived neurons.

Publication Title

Defective synaptic connectivity and axonal neuropathology in a human iPSC-based model of familial Parkinson's disease.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE8856
Sexual dimorphism in the zebrafish hepatic transcriptome and response to dietary carbohydrate
  • organism-icon Danio rerio
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Zebrafish Genome Array (zebrafish)

Description

The liver plays a central role in vertebrate glucose homeostasis, and is also one of the most sexually dimorphic organs in terms of gene expression. While the extent of hepatic sexual dimorphism has been well described in mammals, little is known regarding this phenomenon in non-mammalian species, particularly fish. In this study, we examined hepatic gene expression and physiological phenotypes (growth, proximate body composition, retention efficiencies) to determine whether male and female zebrafish respond differently to diets comprised of 0, 15, 25, or 35 % carbohydrate. Using both Affymetrix microarrays and qRTPCR, we observed substantial sexual dimorphism in the hepatic transcriptome, and the response of some genes to dietary carbohydrate manipulation also varied by sex. Males upregulated genes associated with oxidative metabolism, carbohydrate metabolism, energy production, and amelioration of oxidative stress, while females had higher expression levels of genes associated with translation. Males also expressed elevated levels of hnf4a, a gene thought to be involved in regulating hepatic sexual dimorphism in the rodent. Dietary carbohydrate affected hepatic gene expression, growth performance, retention efficiencies of protein and energy, and percentage of moisture, lipid, and ash. Significant diet effects reflected differences between the 0% carbohydrate diet and the other diets, consistent with previous work on other cyprinids showing a high tolerance for dietary carbohydrate. Our data support the use of the zebrafish as a model for the study of both normal and disease states associated with carbohydrate metabolism, and highlight the importance of accounting for both sex and diet

Publication Title

Sexual dimorphism in hepatic gene expression and the response to dietary carbohydrate manipulation in the zebrafish (Danio rerio).

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP057495
TAF10 interacts with the GATA1 transcription factor and controls mouse erythropoiesis
  • organism-icon Mus musculus
  • sample-icon 7 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We have ablated TAF10 in the erythroid compartment only by crossing the TAF10lox mice with the EpoR-Cre mice and we have studied the development of the erythroid cells in vivo. TAF10 ablation led to embryonic death at E13.5 while at E12.5 there was a clear developmental defect which was reflected in the transcriptional profile of the fetal liver cells. Gata1-target genes were mostly affected and were responsible for the lethal phenotype. Overall design: mRNA from E12.5 fetal livers of TAF10lox/KO:EpoR-Cre+/- (TAF10KO) mice, TAF10HET and WT mice was profiled by NGS (Illumina).

Publication Title

TAF10 Interacts with the GATA1 Transcription Factor and Controls Mouse Erythropoiesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58831
Gene expression data from bone marrow CD34+ cells of patients with myelodysplastic syndromes (MDS) and healthy controls
  • organism-icon Homo sapiens
  • sample-icon 168 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We aimed to determine the impact of the common mutations on the transcriptome in myelodysplastic syndromes (MDS). We linked genomic data with gene expression microarray data and we deconvoluted the expression of genes into contributions stemming from each genetic and cytogenetic alteration, providing insights into how driver mutations interfere with the transcriptomic state. We modelled the influence of mutations and expression changes on diagnostic clinical variables as well as survival.

Publication Title

Combining gene mutation with gene expression data improves outcome prediction in myelodysplastic syndromes.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon SRP056436
Survival rate and transcriptional response upon infection with the generalist parasite Beauveria bassiana in a world-wide sample of Drosophila melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 35 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The ability to cope with infection by a parasite is one of the major challenges for any host species and is a major driver of evolution. Parasite pressure differs between habitats. It is thought to be higher in tropical regions compared to temporal ones. We infected Drosophila melanogaster from two tropical (Malaysia and Zimbabwe) and two temperate populations (the Netherlands and North Carolina) with the generalist entomopathogenic fungus Beauveria bassiana to examine if adaptation to local parasite pressures led to differences in resistance. Contrary to previous findings we observed increased survival in temperate populations. This, however, is not due to increased resistance to infection per se, but rather the consequence of a higher general vigor of the temperate populations. We also assessed transcriptional response to infection within these flies eight and 24 hours after infection. Only few genes were induced at the earlier time point, most of which are involved in detoxification. In contrast, we identified more than 4,000 genes that changed their expression state after 24 hours. This response was generally conserved over all populations with only few genes being uniquely regulated in the temperate populations. We furthermore found that the American population was transcriptionally highly diverged from all other populations concerning basal levels of gene expression. This was particularly true for stress and immune response genes, which might be the genetic basis for their elevated vigor. Overall design: mRNA profiles of whole Drosophila melanogaster adult males from an African, American, Asian and European population after infection with Beauveria bassiana. Samples include uninfected controls, 8h after infection and 24h after infection. 3 biological replicates each (2 in the case of American controls).

Publication Title

Survival Rate and Transcriptional Response upon Infection with the Generalist Parasite Beauveria bassiana in a World-Wide Sample of Drosophila melanogaster.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon SRP064115
Dual function of Med12 in PRC1-dependent gene repression and ncRNA-mediated transcriptional activation
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Mediator is regarded a general co-activator of RNA-Polymerase II dependent transcription but not much is known about its function and regulation in mouse pluripotent embryonic stem cells (mESC). One means of controlling Mediator function is provided by binding of the Cdk8 module (Med12, Cdk8, Ccnc and Med13) to Mediator. Here we report that the Cdk8 module subunit Med12 operates together with PRC1 to silence developmental key genes in the pluripotent state. At the molecular level, PRC1 is required to assemble ncRNA containing Med12-Mediator complexes at promoters of repressed genes. In the course of cellular differentiation the H2A-ubiquitin binding protein Zrf1 abrogates PRC1-Med12 binding and facilitates the recruitment of Cdk8 into Mediator. Remodeling of the Mediator-associated protein complex converts Mediator into a transcriptional enhancer that mediates ncRNA-dependent activation of Polycomb target genes Overall design: RNAseq of pluripotent (control, shNMC, shRing1b, shMed12, shCdk8, shZrf1) and early differentiating (control, shNMC, shMed12, shCdk8, shZrf1) stem cells in triplicates. Control would be normal E14TG2A mESCs. shNMC refers to E14TG2A cells stably transfected with a short hairpin that has no mammalian targets (Non Mammalian Control). All the other samples are indeed stably transfected with short hairpins against the indicated genes.

Publication Title

Dual role of Med12 in PRC1-dependent gene repression and ncRNA-mediated transcriptional activation.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact