refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 29 results
Sort by

Filters

Technology

Platform

accession-icon GSE45765
Expression Data from pancreatic cancer cell lines and orthotopic tumors grown with and without MEK inhibitor
  • organism-icon Homo sapiens
  • sample-icon 164 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Analysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE45757
Expression Data from 22 human pancreatic cancer cell lines grown in triplicates +/- MEK inhibitor CI-1040
  • organism-icon Homo sapiens
  • sample-icon 140 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Analysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity.

Publication Title

Analysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE45758
Expression Data from 24 orthotopic tumors grown in the pancreas of mice +/- MEK inhibitor PD0325901
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

Analysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity.

Publication Title

Analysis of mRNA profiles after MEK1/2 inhibition in human pancreatic cancer cell lines reveals pathways involved in drug sensitivity.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE76765
Tumor Cell Survival Dependence on the DExH-Box Helicase DHX9
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

The ATP-dependent DExH/D-box helicase DHX9 is a key participant in a number of gene regulatory steps, including transcriptional, translational, microRNA-mediated control, DNA replication, and maintenance of genomic stability. DHX9 has also been implicated in maintenance of the tumorigenic process and in drug response. Here, we report that inhibition of DHX9 expression is lethal to multiple human and mouse cancer cell lines. In contrast, using a novel conditional shDHX9 mouse model, we demonstrate that sustained and prolonged suppression of DHX9 is well tolerated at the organismal level. Our results demonstrate a robust tolerance for DHX9 knockdown in non-transformed cells and supports the targeting of DHX9 as an effective and specific chemotherapeutic approach.

Publication Title

Tumor cell survival dependence on the DHX9 DExH-box helicase.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE8482
Comparison of Agr-regulated virulence factor expression in FRI1169 and non-hemolytic variant
  • organism-icon Staphylococcus aureus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix S. aureus Genome Array (saureus)

Description

These cultures were grown to examine the differences in Agr-regulated virulence factor gene expression between wild-type S. aureus FRI1169 and a non-hemolytic variant isolated from a biofilm inoculated with FRI1169. The study is described more thoroughly in the paper "Generation of virulence factor variants in Staphylococcus aureus biofilms", Yarwood et al., J. Bacteriol. 2007.

Publication Title

Generation of virulence factor variants in Staphylococcus aureus biofilms.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP115581
Gene expression profiling during active Lyme arthritis development (22 days post infection with B. burgdorferi) in CD45 negative cells isolated from joint tissue of highly genetically similar mouse strains: B6, ISRCL4, and ISRCL3
  • organism-icon Mus musculus
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Previously, using a forward genetic approach we identified B. burgdorferi arthritis-associated locus 1 (Bbaa1), a quantitative trait locus on Chr4, which physically encompasses the type I IFN gene cluster and regulates Lyme arthritis through heightened type I IFN production. Reciprocal radiation chimeras between B6.C3-Bbaa1 and B6 mice revealed that arthritis is initiated by radiation-sensitive cells, but orchestrated by radiation-resistant components of joint tissue. Advanced congenic lines were developed to reduce the physical size of the Bbaa1 interval, and RNA-seq of resident CD45- joint cells from advanced interval specific recombinant congenic lines (ISRCL4 and ISRCL3) identified myostatin as uniquely upregulated in association with Bbaa1 arthritis development. Our manuscript further demonstrates that myostatin expression is linked to IFN-ß production, and in vivo inhibition of myostatin suppresses Lyme arthritis in the reduced interval Bbaa1 congenic mice, formally implicating myostatin as a novel downstream mediator of joint-specific inflammatory response to B. burgdorferi. Overall design: 22 days following infection with B. burgdorferi, mouse rear ankle joints were gently digested into single-cell suspensions and CD45 negative cells were isolated by magnetic bead separation. CD45 negative cells from both rear ankle joints of two mice were pooled for each n sample in order to increase RNA concentration for gene expression analysis (n=5 per genotype). Gene expression comparisons were made between B6 (control group) and ISRCL4/ISRCL3 congenic lines.

Publication Title

Genetic Control of Lyme Arthritis by <i>Borrelia burgdorferi</i> Arthritis-Associated Locus 1 Is Dependent on Localized Differential Production of IFN-β and Requires Upregulation of Myostatin.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE16114
Cell-Specific Kras and Pten Mutations Document Proliferation Arrest in Granulosa Cells vs. Oncogenic Insult to OSE Cells
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The small G-protein KRAS is crucial for mediating gonadotropin-induced events associated with ovulation. However, constitutive expression of KrasG12D in granulosa cells disrupted normal follicle development leading to the persistence of abnormal follicle-like structures containing non-mitotic cells. To determine what factors mediate this potent effect of KrasG12D, gene profiling analyses were done. We also analyzed KrasG12D;Cyp19-Cre and KrasG12D;Pgr-Cre mutant mouse models that express Cre prior to or after the initiation of granulosa cell differentiation, respectively. KrasG12D induced cell cycle arrest in granulosa cells of the KrasG12D;Cyp19-Cre mice but not in the KrasG12D;Pgr-Cre mice, documenting the cell context specific effect of KrasG12D. Expression of KrasG12D silenced the Kras gene, reduced cell cycle activator genes and impaired expression of granulosa cell and oocyte specific genes. Conversely, levels of PTEN and phosphorylated p38MAPK increased markedly in the mutant granulosa cells. Because disrupting Pten in granulosa cells leads to increased proliferation and survival, Pten was disrupted in the KrasG12D mutant mice. The Pten/Kras mutant mice were infertile but lacked GCTs. By contrast, the Ptenfl/fl;KrasG12D;Amhr2-Cre mice developed aggressive ovarian surface epithelial (OSE) cell tumors that did not occur in the Ptenfl/fl;KrasG12D;Cyp19-Cre or Ptenfl/fl;KrasG12D;Pgr-Cre mouse strains. These data document unequivocally that Amhr2-Cre is expressed in and mediates allelic recombination of oncogenic genes in OSE cells. That KrasG12D/Pten mutant granulosa cells do not transform but rather undergo cell cycle arrest indicates that they resist the oncogenic insults of Kras/Pten by robust self-protecting mechanisms that silence the Kras gene and elevate PTEN and phospho-p38MAPK.

Publication Title

Cell type-specific targeted mutations of Kras and Pten document proliferation arrest in granulosa cells versus oncogenic insult to ovarian surface epithelial cells.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon SRP072519
The effect of niclosamide on the growth and progression of endometriosis in an experimental mouse model
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Because niclosamide inhibits growth and progression of endometriotic lesions, we performed RNA-seq in order to identify genes whose expression is regulated by niclosamide in endometriotic lesions. Our results shown that niclosamide modulates several genes related to cell signaling, extracellular matrix, and inflammatory signaling. Overall design: A direct comparison of endometriotic like lesions developed in mice (n=3 per group) treated orally with either vehicle control or 200 mg/kg bw day of niclosamide for 3 weeks.

Publication Title

Niclosamide As a Potential Nonsteroidal Therapy for Endometriosis That Preserves Reproductive Function in an Experimental Mouse Model.

Sample Metadata Fields

Sex, Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP092181
UMI-based, single cell RNA sequencing of human nasal epithelial cells grown for 33 days at air liquid interface
  • organism-icon Homo sapiens
  • sample-icon 95 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

5' selective RNA-seq of 96 single cells from human nasal epithelial cells. Cells grown for 33 days at an air liquid interface. RNAseq profiling was performed with N4H4 unique molecular identifiers processed on a Fluidigm C1. Sequencing was performed on a Ion Proton (Life Technologies). Overall design: Single cell from human nasal epithelium. 5' selective RNAseq profiling, 96 cells, unique molecular identifiers, custom library preparation.

Publication Title

A cost effective 5΄ selective single cell transcriptome profiling approach with improved UMI design.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP071670
Transcriptome profiling of single HEK293 cells with UMIs sequenced on Ion Torrent Proton (Run 20151215)
  • organism-icon Homo sapiens
  • sample-icon 46 Downloadable Samples
  • Technology Badge IconIonTorrentProton

Description

5' selective RNA-seq of 47 Single HEK293 cells RNAseq profiling with N4H4 unique molecular identifiers processed on a Fluidigm C1. Overall design: Single cell HEK293 cell 5' selective RNAseq profiling, 47 cells, unique molecular identifiers, custom library preparation.

Publication Title

A cost effective 5΄ selective single cell transcriptome profiling approach with improved UMI design.

Sample Metadata Fields

No sample metadata fields

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact