refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1088 results
Sort by

Filters

Technology

Platform

accession-icon E-MEXP-254
Plasmodiophora brassicae infection of Arabidopsis thaliana
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Arabipdosis thaliana (ecotype Col-0) was infected with the root pathogen Plasmodiophora brassicae. Gene expression of the host plant has been analyzed at two time points after inoculation (10 and 23 days after inoculation) compared to the correspondend control plants.

Publication Title

Transcriptome analysis of Arabidopsis clubroots indicate a key role for cytokinins in disease development.

Sample Metadata Fields

Age, Specimen part, Cell line, Time

View Samples
accession-icon GSE67158
Eomes+ natural Th1 (nTh1) T cells share functional features with classical Th1 (cTh1) cells.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Identification of intrathymic Eomes+ natural Th1 cells creates a novel idea that there is more than one way for the generation of innate CD4 T cells. To more deeply characterize this type of innate T cells, we compared the gene expression profile between nTh1 cells generated in CIITAtg mice and classic Th1 cells differentiated from naive CD4 T cells in Th1-polarizing condition.

Publication Title

Thymic low affinity/avidity interaction selects natural Th1 cells.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE72719
Effects of Sorcin (SRI) overexpression on mouse pancreatic beta cells transcriptome
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Pancreatic beta cells use electrical signals to couple changes in blood glucose concentration to insulin release via extracellular calcium (Ca2+) influx. Sorcin (SRI) is a Ca2+-binding protein whose overexpression in cardiomyocytes rescues the abnormal contractile function of the diabetic heart.

Publication Title

Sorcin Links Pancreatic β-Cell Lipotoxicity to ER Ca2+ Stores.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE44671
Wound response in fs-THz-irradiated mouse skin
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. However, the biological effect of THz radiation is not fully understood. Non-thermal effects of THz radiation were investigated by applying a femtosecond-terahertz (fs-THz) pulse to mouse skin. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly through NFB1- and Smad3/4-mediated transcriptional activation. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of transforming growth factor-beta (TGF-). These findings suggest that fs-THz radiation provokes a wound-like signal in skin with increased expression of TGF- and activation of its downstream target genes, which perturbs the wound healing process in vivo.

Publication Title

High-power femtosecond-terahertz pulse induces a wound response in mouse skin.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP064177
Transcriptional regulation by Set1 H3K4 methyltransferase and Jhd2 H3K4 demethylase
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 15 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Histone H3K4 methylation is connected to gene transcription from yeast to humans, but its mechanistic role in transcription and chromatin dynamics remains poorly understood. Here, we investigated the functions for Set1 and Jhd2, the sole H3K4 methyltransferase and H3K4 demethylase, respectively, in S. cerevisiae. Our data show that Set1 and Jhd2 predominantly co-regulate transcription. To further understand the role for H3K4 methylation, we overexpressed Flag epitope-tagged SET1-G990E (a dominant hyperactive allele of SET1) in yeast using the constitutive ADH1 promoter (ADH1p). As a control, we also overexpressed Flag epitope-tagged wild type SET1 in yeast. Analysis of gene expression in set1-null, jhd2-null and wild type SET1 or hypeactive SET1-G990E overexpressing mutants together revealed that the transcriptional regulation at a sub-set of genes, inclduing those governing glycogen metabolism and ribosome biogenesis, is highly sensitive to any change (i.e., loss or gain) in H3K4 methylation levels. Overall, we find combined activities of Set1 and Jhd2 via dynamic modulation of H3K4 methylation contribute to positive or negative transcriptional regulation at shared target genes. Overall design: Gene expression changes were generated from five different yeast strains representing wild type control, set1 null and jhd2 null mutants, and wild type SET1 or dominant hyperacive SET1-G990E overexpressing mutants. Three independent biological samples were grown for each strain, total RNA was isolated, libraries were prepared, sequenced, and analyzed separately.

Publication Title

Counteracting H3K4 methylation modulators Set1 and Jhd2 co-regulate chromatin dynamics and gene transcription.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon SRP181663
Next Generation Sequencing Quantitative Analysis of HepG2, hyper-glycolytic model cell, oxamate treated cells
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

To determine the genes potentially responsible for the lactate-mediated gene expression regulation in hepatocellular carcinoma, we performed RNA-seq analyses on parental HepG2, HepG2/metR and oxamate-treated HepG2/metR cells. To gain mechanistic insights into the lactate-induced pro-migratory phenotypes, we established a cell model that acquired a resistance to metformin while producing lactate at a high level by selecting HepG2 cells that survived a chronic exposure to metformin for more than 5 months (HepG2/metR). In HepG2/metR cells, glycolysis rates were increased by more than 3 folds compared with parental cells, and consequently, lactate production was also highly enhanced. To clarify the gene expression regulation between the lactate level in the HepG2/metR model, we treated the cells with oxamate, an inhibitor of lactate dehydrogenase, and found that it significantly. Using a 2-fold change cut-off value in transcriptome, we selected 1,757 genes significantly up-regulated in HepG2/metR vs parental HepG2 cells. 690 genes were down-regulated by oxamate treatment in HepG2/metR cells. Eventually, we selected 136 genes that are common in the two gene sets, which may directly respond to lactate signaling Overall design: mRNA profiles of HepG2 cells, HepG2/metR (hyper-glycolytic cell model), oxamate treated HepG2/metR (decreased lactate concentration cell) were generated by deep sequencing using Illumina Nextseq 500

Publication Title

Lactate Activates the E2F Pathway to Promote Cell Motility by Up-Regulating Microtubule Modulating Genes.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon SRP043319
Population- and sex-biased gene expression in the excretion organs of Drosophila melanogaster
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

We used RNA-seq to investigate gene expression variation in Malpighian tubules, which have a function analogous to that of human kidneys. In order to characterize population differentiation, we sequenced the Malpighian tubule transcriptomes of flies derived from two populations, one from sub-Saharan Africa (Zimbabwe) and one from Europe (the Netherlands). Males and females were examined separately. Overall, we found a high amount of differential expression between sexes (2,308 genes) and populations (2,474 genes). Although most of the differentially expressed genes were consistent between sexes and populations, there were 615 genes showed sex-biased expression in only one population and 557 genes showed population-biased expression in only one sex. Overall design: mRNA expression profiles of Drosophila melanogaster Malpighian tubules from adult males and females from a European and an African population (2 biological replicates per sex and population)

Publication Title

Population- and sex-biased gene expression in the excretion organs of Drosophila melanogaster.

Sample Metadata Fields

Sex, Subject

View Samples
accession-icon GSE39549
Time-course microarrays reveal early activation of the immune transcriptome and adipokine dysregulation leads to fibrosis in visceral adipose depots during diet-induced obesity
  • organism-icon Mus musculus
  • sample-icon 91 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Time-course analysis of adipocyte gene expression profiles response to high fat diet. The hypothesis tested in the present study was that in diet-induced obesity, early activation of TLR-mediated inflammatory signaling cascades by CD antigen genes, leads to increased expression of pro-inflammatory cytokines and chemokines, resulting in chronic low-grade inflammation. Early changes in collagen genes may trigger the accumulation of ECM components, promoting fibrosis in the later stages of diet-induced obesity. New therapeutic approaches targeting visceral adipose tissue genes altered early by HFD feeding may help ameliorate the deleterious effects of a diet-induced obesity.

Publication Title

Time-course microarrays reveal early activation of the immune transcriptome and adipokine dysregulation leads to fibrosis in visceral adipose depots during diet-induced obesity.

Sample Metadata Fields

Age, Specimen part, Treatment, Time

View Samples
accession-icon GSE43797
Characterization of mRNA and microRNA expression profiles in solid-pseudopapillary neoplasm of pancreas, ductal adenocarcinoma and pancreatic neuroendocrine tumors
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Characterization of gene expression and activated signaling pathways in solid-pseudopapillary neoplasm of pancreas.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE43795
Gene expression of pancreatic tumors
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Solid-pseudopapillary neoplasm of pancreas(SPN), ductal adenocarcinoma(PCA), neuroendocrine tumor(NET) and non-neoplastic pancreas.

Publication Title

Characterization of gene expression and activated signaling pathways in solid-pseudopapillary neoplasm of pancreas.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact