refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 1088 results
Sort by

Filters

Technology

Platform

accession-icon GSE67158
Eomes+ natural Th1 (nTh1) T cells share functional features with classical Th1 (cTh1) cells.
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Identification of intrathymic Eomes+ natural Th1 cells creates a novel idea that there is more than one way for the generation of innate CD4 T cells. To more deeply characterize this type of innate T cells, we compared the gene expression profile between nTh1 cells generated in CIITAtg mice and classic Th1 cells differentiated from naive CD4 T cells in Th1-polarizing condition.

Publication Title

Thymic low affinity/avidity interaction selects natural Th1 cells.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE53016
Microarray Analysis of myb80 versus Wild-Type Anthers
  • organism-icon Arabidopsis thaliana
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Arabidopsis thaliana MYB80 (formerly MYB103) is expressed in the tapetum and microspores between anther developmental stages 6 and 10. MYB80 encodes a MYB transcription factor that is essential for tapetal and pollen development. In order to identify the genes regulated by MYB80, microarray technology was employed to analyze the expression levels of genes that were differentially regulated in the myb80 mutant and wild- type anthers.

Publication Title

The MYB80 transcription factor is required for pollen development and the regulation of tapetal programmed cell death in Arabidopsis thaliana.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP040278
Widespread N6-methyladenosine-dependent RNA Structural Switches Regulate RNA-Protein Interactions
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

We show that N6-methyladenosine (m6A), the most abundant internal modification in mRNA/lncRNA with still poorly characterized function, alters RNA structure to facilitate the access of RBM for heterogeneous nuclear ribonucleoprotein C (hnRNP C). We term this mechanism m6A-switch. Through combining PAR-CLIP with Me-RIP, we identify 39,060 m6A-switches among hnRNP C binding sites transcriptome-wide. We show that m6A-methyltransferases METTL3 or METTL14 knockdown decreases hnRNP C binding at 16,582 m6A-switches. Taken together, 2,798 m6A-switches of high confidence are identified to mediate RNA-hnRNP C interactions and affect diverse biological processes including cell cycle regulation. These findings reveal the biological importance of m6A and provide insights into the sophisticated regulation of RNA-RBP interactions through m6A-induced RNA structural remodeling. Overall design: Measure the m6A methylated hnRNP C binding sites transcriptome-wide by PARCLIP-MeRIP; measure the differential hnRNP C occupancies upon METTL3/METTL14 knockdown by PAR-CLIP; measure RNA abundance and splicing level changes upon HNRNPC, METTL3 and METTL14 knockdown

Publication Title

N(6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE148210
Microarray Analysis of ttg1 versus Wild-Type Developing Seeds
  • organism-icon Arabidopsis thaliana
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

MYB-bHLH-TTG1 regulates Arabidopsis seed coat biosynthesis pathways directly and indirectly via multiple tiers of transcription factors

Publication Title

MYB-bHLH-TTG1 Regulates Arabidopsis Seed Coat Biosynthesis Pathways Directly and Indirectly via Multiple Tiers of Transcription Factors.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP068706
RNA-sequencing of single whole cells and nuclei from mouse dentate granule cells
  • organism-icon Mus musculus
  • sample-icon 201 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Single-cell sequencing methods have emerged as powerful tools for identification of heterogeneous cell types within defined brain regions. Application of single-cell techniques to study the transcriptome of activated neurons can offer insight into molecular dynamics associated with differential neuronal responses to a given experience. Through evaluation of common whole-cell and single-nuclei RNA-sequencing (snRNA-seq) methods, here we show that snRNA-seq faithfully re-capitulates transcriptional patterns associated with experience-driven induction of activity, including immediate early genes (IEGs) such as Fos, Arc, and Egr1. SnRNA-seq of mouse dentate granule cells reveals large-scale changes in the activated neuronal transcriptome after brief novel environment exposure, including induction of MAPK pathway genes . In addition, we observe a continuum of activation states, revealing a pseudo-temporal pattern of activation from gene expression alone. In summary, snRNA-seq of activated neurons enables the examination of gene expression beyond IEGs,allowing for novel insights into neuronal activation patterns in vivo. Overall design: Examination of 1) 82 whole-cell (WC) dentate granule cells from a PTZ- or saline-treated mouse, and 2) 23 single-nuclei (SN) from dentate granule cells of a homecage (HC) mouse or 96 nuclei from a mouse exposed to a novel environment (NE)

Publication Title

Nuclear RNA-seq of single neurons reveals molecular signatures of activation.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE6679
Staufen1 regulates a variety of mammalian transcripts
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

It is currently unknown how extensively the double-stranded RNA binding protein Staufen (Stau)1 is utilized by mammalian cells to regulate gene expression. To date, Stau1 binding to the 3 untranslated region (3UTR) of ARF1 mRNA has been shown to target ARF1 mRNA for Stau1-mediated mRNA decay (SMD). ARF1 SMD depends on translation and recruitment of the nonsense-mediated mRNA decay factor Upf1 to the ARF1 3UTR by Stau1. Here, we use microarray analyses to examine changes in the abundance of cellular mRNAs that occur when Stau1 is depleted. Results indicate that 1.1% and 1.0% of the 11,569 HeLa-cell transcripts that were analyzed are, respectively, upregulated and downregulated at least two-fold in three independently performed experiments. Additionally, we localize the Stau1 binding site to the 3UTR of four mRNAs that we define as natural SMD targets. Together, these and substantiating results suggest that Stau1 influences the expression of a wide variety of physiologic transcripts and metabolic pathways.

Publication Title

Staufen1 regulates diverse classes of mammalian transcripts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE57898
Transcriptomic analysis of APC knockdown in proliferating primary myoblasts
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

APC is a key regulator of canonical Wnt signalling since it participates to beta-catenin targeting to proteasomal degradation when the pathway is inactive. Moreover, independently of Wnt signaling, APC regulates several cellular functions such as mycrotubule dynamics, chromosome segregation, cell adhesion. Although APC has been widely studied for its implication in initation and progression of several cancers, its role in satellite cells (skeletal muscle stem cells) has never been investigated.

Publication Title

APC is required for muscle stem cell proliferation and skeletal muscle tissue repair.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18690
SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Global expression analysis of neural crest-like skin-derived precursors (SKPs) and Sox2-positive follicle dermal cells that SKPs originate from.

Publication Title

SKPs derive from hair follicle precursors and exhibit properties of adult dermal stem cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE14229
The differentially expressed genes identified in the microarray analysis using myb5 and wild-type (Col) seeds
  • organism-icon Arabidopsis thaliana
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

The MYB gene family encodes transcription factors with a diverse range of functions in Arabidopsis. This study demonstrated that MYB5, which is expressed in trichomes and seeds, plays a central role in trichome and seed development. A microarray analysis of myb5 seeds identified other members of the MYB5 regulatory network.

Publication Title

The Arabidopsis MYB5 transcription factor regulates mucilage synthesis, seed coat development, and trichome morphogenesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE44671
Wound response in fs-THz-irradiated mouse skin
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Terahertz (THz) technology has emerged for biomedical applications such as scanning, molecular spectroscopy, and medical imaging. However, the biological effect of THz radiation is not fully understood. Non-thermal effects of THz radiation were investigated by applying a femtosecond-terahertz (fs-THz) pulse to mouse skin. Analysis of the genome-wide expression profile in fs-THz-irradiated skin indicated that wound responses were predominantly through NFB1- and Smad3/4-mediated transcriptional activation. Repeated fs-THz radiation delayed the closure of mouse skin punch wounds due to up-regulation of transforming growth factor-beta (TGF-). These findings suggest that fs-THz radiation provokes a wound-like signal in skin with increased expression of TGF- and activation of its downstream target genes, which perturbs the wound healing process in vivo.

Publication Title

High-power femtosecond-terahertz pulse induces a wound response in mouse skin.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact