refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 467 results
Sort by

Filters

Technology

Platform

accession-icon GSE37693
Gene Expression Effects of IL-13 on Primary Human Airway Epithelial Cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

Primary culture airway epithelial cells, grown under physiologic air-liquid interface conditions, with, or without IL-13 in order to study the effects of this cytokine on mucous cell metaplasia, an important feature of asthma and COPD.

Publication Title

IL-13-induced airway mucus production is attenuated by MAPK13 inhibition.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE107870
Expression data from human macrophages treate with miR-1246 mimic/inhibitor
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Clariom S Human array (clariomshuman)

Description

MiR-1246 was found to promote tumorigenesis and metastasis in sevearl cancer types. In the context of tumor microenvironment, tumor-associated macrophages are a central part typically correlated with poor prognosis.

Publication Title

Mutant p53 cancers reprogram macrophages to tumor supporting macrophages via exosomal miR-1246.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61421
PARP9 and DTX3L in Antiviral Host Defense
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon (lluminamouse6v1.1expressionbeadchip[arrayaddressidversion), Illumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection.

Sample Metadata Fields

Sex, Cell line, Treatment

View Samples
accession-icon GSE61413
Modified Stat1 Confers Enhanced Interferon Responsiveness and Improved Baseline Antiviral Host Defense
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon (lluminamouse6v1.1expressionbeadchip[arrayaddressidversion)

Description

U3A cells stably expressing wild-type STAT1 or STAT1-CC were treated with interferon beta (10U/ml) or control for 24 hours to assess effects of stat1 modifications, interferon, and the interaction on gene expression.

Publication Title

PARP9-DTX3L ubiquitin ligase targets host histone H2BJ and viral 3C protease to enhance interferon signaling and control viral infection.

Sample Metadata Fields

Cell line, Treatment

View Samples
accession-icon GSE12132
Rat response to changes in developmental stage - 3 types of tissue, 3 gravity conditions, 2 developmental conditions
  • organism-icon Rattus norvegicus
  • sample-icon 72 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Transcriptional crosstalk between mammary gland, liver and adipose tissue

Publication Title

Homeorhetic adaptation to lactation: comparative transcriptome analysis of mammary, liver, and adipose tissue during the transition from pregnancy to lactation in rats.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38792
Visceral fat trancriptome in obstructive sleep apnea
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Rationale: Obstructive sleep apnea (OSA) has been associated with metabolic dysregulation and systemic inflammation. This may be due to pathophysiologic effects of OSA on visceral adipose tissue. We sought to assess the transcriptional consequences of OSA on adipocytes by utilizing pathway-focused analyses.

Publication Title

A pathway-based analysis on the effects of obstructive sleep apnea in modulating visceral fat transcriptome.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE39877
Expression data from skeletal muscles of flies with muscle-specific overexpression of Foxo or Mnt
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Skeletal muscle senescence influences whole organism aging, yet little is known on the relay of pro-longevity signals from muscles to other tissues. We performed an RNAi screen in Drosophila for muscle-released cytokines (?myokines?) regulating lifespan and identified Myoglianin, the homolog of human Myostatin. Myoglianin is induced in skeletal muscles by the transcription factor Mnt and together they constitute an inter-organ signaling module that regulates lifespan, age-related muscle dysfunction, and protein synthesis across aging tissues. Both Mnt and Myoglianin activate already in young age the protective decline in protein synthesis that is typical of old age, while knock-down of Myoglianin impairs this process. Mechanistically, Mnt decreases the expression of nucleolar components in muscles while also decreasing nucleolar size in distant tissues via Myostatin/p38 MAPK signaling. Our results highlight a myokine-dependent inter-organ longevity pathway that coordinates nucleolar function and protein synthesis across aging tissues.

Publication Title

Intertissue control of the nucleolus via a myokine-dependent longevity pathway.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE3962
Mouse oocyte and one-cell embryo polysomal mRNA
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Transcriptional activation in mammalian embryos occurs in a stepwise manner. In mice, it begins at the late one-cell stage, followed by a minor wave of activation at the early two-cell stage, and then the major genome activation (MGA) at the late two-cell stage. Cellular homeostasis, metabolism, cell cycle, and developmental events are orchestrated before MGA by time-dependent changes in the array of maternal transcripts being translated (i.e., the translatome). Despite the importance of maternal mRNA and its correct recruitment for development, neither the array of recruited mRNA nor the regulatory mechanisms operating have been well cheracterized. We present the first comprehensive analysis of changes in the maternal component of the zygotic translatome during the transition from oocyte to late one-cell stage embryo, revealing global transitions in the functional classes of translated maternal mRNAs, and apparent changes in the underlying cis-regulatory mechanisms.

Publication Title

Analysis of polysomal mRNA populations of mouse oocytes and zygotes: dynamic changes in maternal mRNA utilization and function.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE49800
Effects of CPAP Therapy on Leukocyte Gene Expression
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Rationale: Obstructive sleep apnea (OSA) has been associated with a number of chronic disorders that may improve with effective therapy. However, the molecular pathways affected by continuous positive airway pressure (CPAP) treatment are largely unknown. We sought to assess the system-wide consequences of CPAP therapy by transcriptionally profiling peripheral blood leukocytes (PBLs). Methods: Subjects diagnosed with severe OSA were treated with CPAP, and whole-genome expression measurement of PBLs was performed at baseline and following therapy. We used Gene Set Enrichment Analysis (GSEA) to identify gene sets that were differentially enriched. Network analysis was then applied to identify key drivers of pathways influenced by CPAP. Results: 18 subjects with severe OSA (apnea hypopnea index 30 events/hour) underwent CPAP therapy and microarray analysis of their PBLs. Treatment with CPAP improved AHI, daytime sleepiness and blood pressure but did not affect anthropometric measures. GSEA revealed a number of enriched gene sets, many of which were involved in neoplastic processes and displayed down-regulated expression patterns in response to CPAP. Network analysis identified several densely connected genes that are important modulators of cancer and tumor growth. Conclusions: Effective therapy of OSA with CPAP is associated with alterations in circulating leukocyte gene expression. Functional enrichment and network analyses highlighted transcriptional suppression in cancer-related pathways suggesting potentially novel mechanisms linking OSA with neoplastic signatures.

Publication Title

Treatment of obstructive sleep apnea alters cancer-associated transcriptional signatures in circulating leukocytes.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE56994
The Scc2NIPBL/Scc4MAU2 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions.
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The Scc2-Scc4 complex acts in sister chromatid cohesion and transcriptional regulation by maintaining nucleosome-free regions.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact