refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 40 results
Sort by

Filters

Technology

Platform

accession-icon GSE73623
Valvular intersitial cell transcriptional response to culture platform
  • organism-icon Sus scrofa
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Porcine Gene 1.0 ST Array (porgene10st)

Description

Expression data from valvular interstitial cells cultured in 2D or 3D PEG hydrogel systems compared to culture on tissue culture polystyrene and freshly isolated cells

Publication Title

Transcriptional profiles of valvular interstitial cells cultured on tissue culture polystyrene, on 2D hydrogels, or within 3D hydrogels.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE10091
Transcript-specific translational regulation in the unfolded protein response of Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

The accumulation of unfolded proteins in the lumen of the endoplasmic reticulum (ER) causes stress and induces the unfolded protein response (UPR) which is characterised in part by the transcriptional induction of genes involved in assisting protein folding. Translational responses to ER stress have been less well described and here we report on a genome-wide analysis of translational regulation in the response to the ER stress-inducing agent dithiothreitol (DTT) in Saccharomyces cerevisiae. Although the observed polysome profiles were similar under control and ER stress conditions microarray analysis identified transcipt-specific translational regulation. Genes with functions in ribosomal biogenesis and assembly were translationally repressed under ER stress. In contrast mRNAs for known UPR genes, including the UPR transcription factor HAC1, the ER-oxidoreductase ERO1 and the ER-associated protein degradation (ERAD) gene DER1 were enriched in polysomal fractions under ER stress conditions. In addition, we show that splicing of HAC1 mRNA is required for efficient ribosomal loading and that Gcn2p is required for normal HAC1 splicing, so shedding light on the role of this protein kinase in the UPR pathway.

Publication Title

Transcript-specific translational regulation in the unfolded protein response of Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE59963
The Chromatin Remodeller CHD7 Lies Upstream of Semaphorin, Slit/Robo and Calcium Handling Pathways during Cardiovascular Development
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Chromatin remodelling provides a key mechanism for the regulation of gene expression through dynamic alterations in nucleosome occupancy at promoters and enhancers. Haploinsufficiency for the ATP-dependent chromatin remodeller chromodomain-helicase-DNA-binding protein 7 (CHD7) causes human CHARGE syndrome. CHARGE is characterised by a distinct pattern of congenital anomalies, including cardiovascular malformations, and has traditionally been considered a neurocristopathy. We present a new perspective, by showing severe structural cardiovascular defects following ablation of Chd7 in the anterior mesoderm and other cardiac-related lineages. We identify multiple downstream pathways affected by the loss of Chd7 and disruption of excitation-contraction coupling in cardiomyocytes. Furthermore, we demonstrate CHD7 binding at the Sema3C promoter and alterations to the local chromatin structure in vivo, indicating direct transcriptional regulation. This work therefore provides novel insights into the etiology of heart defects arising in CHARGE syndrome and reveals a requirement for CHD7 activity in mesodermal cardiac progenitors.

Publication Title

A critical role for the chromatin remodeller CHD7 in anterior mesoderm during cardiovascular development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP049223
Transcription and Imprinting Dynamics in Developing Postnatal Male Germline Stem Cells
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon

Description

Paternal imprinting initiates in primordial germ cells (PGCs), and is considered largely completed at birth. The resulting postnatal spermatogonial stem cells (SSCs) thenself-renew and proliferate to populate the testicular niche, with sexual maturation enabling productive gametogenesis. Overall design: mRNA profiles of neonatal wild type (WT) mice testis were generated by deep sequencing using Illumina HiSeq 2000 Examination of 2 different histone modifications in mouse spermatogonia Please note that ChIPSeq_Kitplus samples are samples isolated with MACS CD117 microbeads from Miltenyi and ChIPSeq_Kitminus are samples that were not positively selected for Kit.

Publication Title

Transcription and imprinting dynamics in developing postnatal male germline stem cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP131524
Synergy from Gene Expression and Network Mining (SynGeNet) method predicts genotype-specific synergistic drug combinations in melanoma
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Using our computational method SynGeNet to evaluate genomic and transcriptomic data characterizing four major genomic subtypes of melanoma, we selected the top ranked drug combination for BRAF-mutation melanoma for subsequent validaiton. Here we present drug-induced gene expression data from the BRAF-mutant A375 melanoma cell line in response to four treatment conditions: vehicle control (DMSO), vemurafenib alone, tretinoin (ATRA) alone and vemurafenib+tretinoin combination. Overall design: Gene expression profiles of A375 melanoma cells were generated by RNAseq (Illumina HiSeq 4000) under the following treatment conditions: vehicle control (DMSO), vemurafenib, tretinoin and vemurafenib + tretinoin combination.

Publication Title

Synergy from gene expression and network mining (SynGeNet) method predicts synergistic drug combinations for diverse melanoma genomic subtypes.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP151493
Pericentromeric hypomethylation elicits an interferon response in an animal model of ICF syndrome [ssRNA-seq]
  • organism-icon Danio rerio
  • sample-icon 5 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The goal of this study was to investigate DNA methylation and gene expression changes in a zebrafish model of ICF Syndrome which were generated by mutation of ICF-gene zbtb24. Comparison of gene expression changes between wildtype and zbtb24 homozygous mutants revealed upregulation of interferon response genes following zbtb24 deletion. Upregulation of interferon response genes was blocked by mutation of the dsRNA helicase Mda5. Overall design: For RNA-seq, gene expression was compared in whole two-week-old zebrafish larvae that were wildtype or homozygous for the zbtb24mk22 mutant allele. We further performed RNA-Seq analysis in three-week-old zebrafish larvae that were WT, mda5mk29/mk29 , zbtb24mk22/mk22 and mda5mk29/mk29 ;zbtb24mk22/mk22. Three samples consisting of pools of 10 larvae were examined for each genotype. For ERRBS, DNA was separately isolated from the fins of three wildtype and three zbtb24mk22 homozygous mutant adults.

Publication Title

Pericentromeric hypomethylation elicits an interferon response in an animal model of ICF syndrome.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE72240
Expression data from fetal sheep immunocytes
  • organism-icon Ovis aries
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Ovine Gene 1.1 ST Array (ovigene10st)

Description

study investigating the initiation of systemic inflammatory signaling in fetuses exposed to TLR-4 agonist lipopolysaccharides from E.coli

Publication Title

Outside-in? Acute fetal systemic inflammation in very preterm chronically catheterized sheep fetuses is not driven by cells in the fetal blood.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE63038
Gene expression profiling of the human natural killer cell response to FcR activation in the presence of IL-12
  • organism-icon Homo sapiens
  • sample-icon 31 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

The majority of NK cells (~90%) are phenotypically characterized as CD56dimCD16+, while the remaining are CD56brightCD16-. The cytotoxic CD56dimCD16+ NK subset expresses higher levels of chemokine receptors, and therefore is preferentially recruited to sites of inflammation. Encounters between CD56dimCD16+ NK cells with target cells and locally secreted inflammatory cytokines synergize to induce activation of this subset, leading to dramatically increased cytotoxic activity against target cells and abundant pro-inflammatory cytokine production often equivalent to that of the CD56brightCD16- population. The early recruitment of activation of CD56dimCD16+ NK cells to sites of inflammation raises many important questions regarding the potential immune functions of these cells that extend beyond their cytotoxic capabilities. This study has sought to elucidate the genetic profile of activated CD56dimCD16+ NK cells via a series of laboratory-based approaches coupled with a bioinformatics persective.

Publication Title

Gene expression profiling of the human natural killer cell response to Fc receptor activation: unique enhancement in the presence of interleukin-12.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP070060
A human mitochondrial DNA genetic bottleneck prevents mutational meltdown by purifying the early maternal germ line
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Mitochondrial DNA (mtDNA) mutations cause inherited diseases and are implicated in the pathogenesis of common late-onset disorders, but it is not clear how they arise and propagate in the humans. Here we show that mtDNA mutations are present in primordial germ cells (PGCs) within healthy female human embryos. Close scrutiny revealed the signature of selection against non-synonymous variants in the protein-coding region, tRNA gene variants, and variants in specific regions of the non-coding D-loop. In isolated single PGCs we saw a profound reduction in the cellular mtDNA content, with discrete mitochondria containing ~5 mtDNA molecules during early germline development. Single cell deep mtDNA sequencing showed rare variants reaching higher heteroplasmy levels in later PGCs, consistent with the observed genetic bottleneck, and predicting >80% levels within isolated organelles. Genome-wide RNA-seq showed a progressive upregulation of genes involving mtDNA replication and transcription, linked to a transition from glycolytic to oxidative metabolism. The metabolic shift exposes deleterious mutations to selection at the organellar level during early germ cell development. In this way, the genetic bottleneck prevents the relentless accumulation of mtDNA mutations in the human population predicted by Muller's ratchet. Mutations escaping this mechanism will, however, show massive shifts in heteroplasmy levels within one human generation, explaining the extreme phenotypic variation seen in human pedigrees with inherited mtDNA disorders. Overall design: RNA-Seq and NGS analysis to investigate transcriptomes and mtDNA sequences of fetal hPGCs

Publication Title

Segregation of mitochondrial DNA heteroplasmy through a developmental genetic bottleneck in human embryos.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE68790
caArray_EXP-578: Gene Expression Profiles of Pediatric B-Precursor High-Risk Acute Lymphoblastic Leukemia (COG Study AALL0232 - Cohort 1).
  • organism-icon Homo sapiens
  • sample-icon 274 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This experiment comprises 283 CEL files generated on the Affymetrix U133 Plus 2.0 gene expression microarray platform, using patient peripheral blood and bone marrow samples from the first cohort of patients accrued to Children's Oncology Group Study AALL0232. No clinical covariate data is provided at this time as the clinical study is not yet published. Researchers who would like to request outcome or other covariate data are asked to contact Dr. Cheryl Willman, cwillman@unm.edu, 505.272.5622 (University of New Mexico) and Dr. Steven Hunger, Stephen.Hunger@childrenscolorado.org (Children's Oncology Group and Children's Hospital Colorado) to arrange a collaboration.

Publication Title

Tyrosine kinome sequencing of pediatric acute lymphoblastic leukemia: a report from the Children's Oncology Group TARGET Project.

Sample Metadata Fields

Disease

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact