refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 128 results
Sort by

Filters

Technology

Platform

accession-icon GSE22227
Expression data of Soybean (Glycine max) roots from different iron treatments.
  • organism-icon Glycine max
  • sample-icon 23 Downloadable Samples
  • Technology Badge Icon Affymetrix Soybean Genome Array (soybean)

Description

Two Near Isogenic soybean (Glycine max) lines were grown in hydroponic conditions with either 50uM ferric nitrate or 100uM ferric nitrate. After 10 days, half the plants were harvested (total root tissue). At 12 days after planting, iron was added to plants grown in low iron conditions bringing them up to sufficient iron growth conditions. Root tissue was harvested for the remaining plants at 14 days after planting.

Publication Title

An integrative approach to genomic introgression mapping.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE72406
Identification and targeting of long-term tumor propagating cells in small cell lung cancer
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

FACS sorted TPCs (CD24HighCD44LowEpCAMHigh) and non-TPCs (CD24Low, CD24HighCD44High, and CD24HighCD44LowEpCAMLow) from mouse primary SCLC tumors

Publication Title

Identification and Targeting of Long-Term Tumor-Propagating Cells in Small Cell Lung Cancer.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE68038
Comparison of cultured chondrocytes from knee and proximal interphalangeal joints
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Osteoarthritis (OA) of the hand is a common disease resulting in pain and impaired function. The pathogenesis of hand OA (HOA) is elusive and models to study it have not been described so far. Culture of chondrocytes is a model to study the development of cartilage degeneration, which is a hallmark of OA and well established in OA of the knee and hip. In the current study we investigated the feasibility human chondrocyte culture derived from proximal interphalangeal (PIP) finger joints of dissecting room cadavers. Index and middle fingers without signs of osteoarthritis were obtained from 30 cadavers using two different protocols. Hyaline cartilage from both articulating surfaces of the proximal interphalangeal (PIP) joint was harvested and digested in collagenase. Cultured chondrocytes were monitored for contamination, viability, and expression of chondrocyte specific genes. Chondrocytes derived from knee joints of the cadavers were cultured under identical conditions. Gene expression comparing chondrocytes from PIP and knee joints was carried out using Affymetrix GeneChip Human 2.0 ST arrays. The resulting differentially expressed genes were validated by real-time PCR and immunohistochemistry.Chondrocytes harvested up to 101 hours after death of the donors were viable. mRNA expression of collagen 2A1, aggrecan and Sox9 was significantly higher in chondrocytes as compared to cultured fibroblasts. Comparison of gene expression by chondrocytes from PIP and knee joints yielded 528 differentially expressed genes. Chondrocytes from the same joint region had a higher grade of similarity than chondrocytes of the same individual. These results were validated using real-time PCR and immunohistochemistry.We demonstrate for the first time a reliable method for culture of chondrocytes derived from PIP joints. PIP chondrocytes show a specific gene expression pattern and could be used as tool to study cartilage degeneration in HOA.

Publication Title

Chondrocyte cultures from human proximal interphalangeal finger joints.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE32386
Expression profiling of murine neuroblastoma in transgenic mice
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Neuroblastoma is an embryonal tumor arising from the neural crest. It can be mimicked in mice by neural crest-specific overepxression of oncogenes such as MYCN or mutated ALK.

Publication Title

Targeted expression of mutated ALK induces neuroblastoma in transgenic mice.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE98904
Expression data from Trp53- or Atm-deficient E-TCL1 murine CLL cells
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

To analyze expression differences between Trp53 pro-and deficient as well as Atm pro- and deficient murine CLL tumors developing in the E-TCL1 mouse model, we analyzed splenocytes isolated from heavily infiltrated spleens of sick mice.

Publication Title

Two mouse models reveal an actionable PARP1 dependence in aggressive chronic lymphocytic leukemia.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP092906
Comparison of gene expression patterns of two SCLC genetically-engineered mouse models; Rb1 floxed, Trp53 floxed, LSL-Myc T58A-IRES-Luc vs. Rb1 floxed, Trp53 floxed, Rbl2 (p130) floxed
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Myc expression cooperates with Rb1 and Trp53 loss in mouse lungs to generate rapid, aggressive, highly metastatic and neuroendocrine-low tumors that are similar to human variant subset of SCLC with high NEUROD1 expression. Targeted drug screening reveals that mouse and human MYC-driven SCLC are vulnerable to Aurora kinase inhibition in combination with chemotherapy in vivo. Overall design: Tumor formation is induced by infecting the conditional Rb1 fl/fl; Trp53 fl/fl, LSL-Myc (T58A) and Rb1 fl/fl; Trp53 fl/fl, p130 fl/fl GEMMs with adenoviruses with Cgrp promoter driving Cre recombinase. The tumors were macro-dissected from lungs. RNA was extracted from fresh or flash frozen tumors and subjected to single end RNA sequencing.

Publication Title

MYC Drives Progression of Small Cell Lung Cancer to a Variant Neuroendocrine Subtype with Vulnerability to Aurora Kinase Inhibition.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP066021
Physical interaction between mutant calreticulin and the thrombopoietin receptor is required for transformation of hematopoietic cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Somatic mutations in calreticulin (CALR) are present in approximately 40% of patients with myeloproliferative neoplasms (MPN). However, the mechanism by which mutant CALR is oncogenic is unknown. Here, we demonstrate that a megakaryocytic-specific MPN phenotype is induced when mutant CALR is over-expressed in mice and that the thrombopoietin receptor, MPL is required for mutant CALR driven transformation. Whole transcriptome analysis reveals enrichment of STAT signatures in mutant CALR transformed cells and JAK2 inhibitor treatment abrogates STAT activation. Employing extensive mutagenesis-based structure-function analysis we demonstrate that the positively charged amino acids within the mutant CALR C-terminus are required for cellular transformation through facilitating physical interaction between mutant CALR and MPL. Together, our findings elucidate a novel mechanism of cancer pathogenesis. Overall design: Transcriptomes derived from BA/F3-MPL cells transformed with human wild-type CALR, human mutant CALR 52bp del, or Empty vector, at time zero (t0) and 24 hours (t24) after IL3-withdrawal culture were generated by deep sequencing, two replicas, by HiSeq2000.

Publication Title

Mutant Calreticulin Requires Both Its Mutant C-terminus and the Thrombopoietin Receptor for Oncogenic Transformation.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE107392
The molecular basis of T-PLL is an actionable perturbation of TCL1/ATM- and epigenetically instructed damage responses [murine gene expression array]
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

T-cell prolymphocytic leukemia (T-PLL) is a rare and poor-prognostic mature T-cell malignancy. To address its incomplete molecular concept, we integrated large-scale profiling data of alterations in gene expression, allelic copy number (CN), and nucleotide sequences in 111 well-characterized patients. Besides prominent signatures of T-cell activation and prevalent clonal variants, we also identified novel hot-spots for CN variability, fusion molecules, alternative transcripts, and progression-associated dynamics. The overall lesional spectrum of T-PLL is mainly annotated to axes of DNA damage responses, T-cell receptor / cytokine signaling, and histone modulation. We formulate a multi-dimensional model of T-PLL pathogenesis centered around a unique combination of TCL1 overexpression with damaging ATM aberrations as initiating core lesions. The effects imposed by TCL1 cooperate with compromised ATM towards a leukemogenic phenotype of impaired DNA damage processing. Dysfunctional ATM appears inefficient in alleviating elevated redox burdens and telomere attrition and in evoking a p53-dependent apoptotic response to genotoxic insults. As non-genotoxic strategies, synergistic combinations of p53 reactivators and deacetylase inhibitors reinstate such cell death execution.

Publication Title

Actionable perturbations of damage responses by TCL1/ATM and epigenetic lesions form the basis of T-PLL.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE63457
Fxr-deficiency in mouse liver slices aggravates cyclosporin A toxicity by upregulation of pro-inflammatory genes and downregulation of genes involved in mitochondrial functions
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.1 ST Array (mogene11st)

Description

The transcription factor farnesoid X receptor (FXR) governs bile acid and energy homeostasis, is involved in inflammation, and has protective functions in the liver. In the present study we investigated the effect of Fxr deficiency in mouse precision cut liver slices (PCLS) exposed to a model hepatotoxicant cyclosporin A (CsA). It was anticipated that Fxr deficiency could aggravate toxicity of CsA in PCLS and pinpoint to novel genes/processes regulated by FXR.

Publication Title

Cyclosporin A induced toxicity in mouse liver slices is only slightly aggravated by Fxr-deficiency and co-occurs with upregulation of pro-inflammatory genes and downregulation of genes involved in mitochondrial functions.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP091561
ERRa/ERRg KO heart gene expression analysis
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

ERRa and ERRg are essential transcriptional regulators of cardiac metabolism and functions. Here we extend our previous studies by analyzing the transcriptome changes in ERRa/ERRg KO hearts Overall design: RNA from 16-day-old mouse hearts were used. 2-3 mice per sample, 2 samples per genotype, 4 genotypes (aHetgWT, aHetgKO, aKOgWT, aKOgKO)

Publication Title

Single-nucleus transcriptomic survey of cell diversity and functional maturation in postnatal mammalian hearts.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact