refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 313 results
Sort by

Filters

Technology

Platform

accession-icon GSE34652
KGF effects on cutaneous SCC cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Keratinocyte growth factor (KGF, fibroblast growth factor-7) is a fibroblast-derived mitogen, which stimulates proliferation of epithelial cells. The expression of KGF by dermal fibroblasts is induced following injury and it promotes wound repair. However, the role of KGF in cutaneous carcinogenesis and cancer progression is not known. We have examined the role of KGF in progression of squamous cell carcinoma (SCC) of the skin.

Publication Title

Keratinocyte growth factor induces gene expression signature associated with suppression of malignant phenotype of cutaneous squamous carcinoma cells.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE66368
EphB2 promotes progression of cutaneous squamous cell carcinoma
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

EphB2 Promotes Progression of Cutaneous Squamous Cell Carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE66359
Analysis of the gene expression profile in normal human epidermal keratinocytes and cutaneous squamous cell carcinoma cell lines
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The incidence of keratinocyte-derived skin cancer, cutaneous squamous cell carcinoma (cSCC) is increasing worldwide making it the second most common metastatic skin cancer.

Publication Title

EphB2 Promotes Progression of Cutaneous Squamous Cell Carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE66361
Analysis of the gene expression profile in cutaneous squamous cell carcinoma cells after EphB2 knockdown
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The role of Eph/ephrin signaling in numerous biological processes has been established. However, Eph/ephrin signaling has been shown to have complex role in tumor progression. The role of EphB2 receptor in the progression of cutaneous squamous cell carcinoma (cSCC) has not been studied before.

Publication Title

EphB2 Promotes Progression of Cutaneous Squamous Cell Carcinoma.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE19748
Gene expression screening during early granulation tissue formation (I)
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

Hydroxyapatite-coated cellulose induces a quicker and stronger inflammatory response compared to uncoated cellulose. Furthermore, the coated cellulose increases the homing at circulating bone-marrow derived progenitor cells. For this reason, Illumina microarray was used to study the early gene expression of the forming granulation tissue in the hydroxyapatite-coated sponges.

Publication Title

Hemoglobin expression in rat experimental granulation tissue.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon SRP047293
Differential gene expression in ahr-1 mutants compared to wild-type C. elegans
  • organism-icon Caenorhabditis elegans
  • sample-icon 3 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The aryl hydrocarbon receptor (AHR) functions in higher organisims in development, metabolism and toxic responses. Its Caenorhabditis elegans (C. elegans) ortholog, AHR-1, facilitates neuronal development, growth and movement. We investigated the effect of AHR mutation on the transcriptional profile of L4 stage C. elegans using RNA-seq and quantitative real-time PCR in order to understand better AHR-1 function at the genomic level. Illumina HiSeq 2000 sequencing yielded 51.1, 61.2 and 54.0 million reads from wild-type controls, ahr-1(ia03) and ahr-1(ju145) mutants, respectively, providing detection of over 18,000 transcripts in each sample. Fourteen transcripts were over-expressed and 125 under-expressed in both ahr-1 mutants when compared to wild-type. Under-expressed genes included soluble guanylate cyclase (gcy) family genes, some of which were previously demonstrated to be regulated by AHR-1. A neuropeptide-like protein gene, nlp-20, and an F-box domain protein gene fbxa-192 and its pseudogenes fbxa-191 and fbxa-193 were also under-expressed. Conserved xenobiotic response elements were identified in the 5'' flanking regions of some but not all of the gcy, nlp-20 and fbxa genes. These results extend previous studies demonstrating control of gcy family gene expression by AHR-1, and furthermore suggest a role of AHR-1 in regulation of a neuropeptide gene as well as pseudogenes. Overall design: One sample was created from each of the following strains: wild-type N2, ahr-1(ia03) mutant and ahr-1(ju145) mutant. In data analysis, each mutant sample was individually compared to the wild-type sample to find differentially expressed genes.

Publication Title

Transcriptional profiling reveals differential expression of a neuropeptide-like protein and pseudogenes in aryl hydrocarbon receptor-1 mutant Caenorhabditis elegans.

Sample Metadata Fields

Subject

View Samples
accession-icon E-MEXP-1333
Brain gene expression profiles of Cln1 and Cln5 deficient mice unravels common molecular pathways underlying neuronal degeneration in NCL diseases
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

The neuronal ceroid lipofuscinoses (NCL) are a group of childhood inherited neurodegenerative disorders characterized by blindness, early dementia and pronounced cortical atrophy. The similar pathological and clinical profiles of different forms of NCL suggest that common disease mechanisms may be involved. Here, we have performed quantitative gene expression profiling of cortex from targeted knock out mice produced for Cln1 and Cln5 to explore NCL-associated molecular pathways. Combined microarray datasets from both mouse models exposed a common affected pathway: genes regulating cytoskeletal dynamics and neuronal growth cone stabilization display similar aberrations. We analyzed locus specific gene expression and showed regional clustering of Cln1 and three major genes of this pathway, further supporting a close functional relationship between the corresponding gene products, Cap1, Ptprf and Ptp4a2. The evidence from the gene expression data was substantiated by immunohistochemical staining data of Cln1-/- and Cln5-/- cortical neurons. These primary neurons displayed abnormalities in beta-tubulin and actin as well as abnormal intracellular distribution of growth cone associated proteins GAP-43, synapsin and Rab3. Our data provide the first evidence for a common molecular pathogenesis behind neuronal degeneration in CLN1 and CLN5. Since CLN1 and CLN5 code for proteins with distinct functional roles these data may have implications for other forms of NCL.

Publication Title

Brain gene expression profiles of Cln1 and Cln5 deficient mice unravels common molecular pathways underlying neuronal degeneration in NCL diseases.

Sample Metadata Fields

Sex, Age, Specimen part, Disease

View Samples
accession-icon GSE51472
Expression data of human aortic valve cusps
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Calcific aortic valve disease is the most common form of valvular heart disease in the Western World. Milder degrees of aortic valve calcification is called aortic sclerosis and severe calcification with impaired leaflet motion is called aortic stenosis.

Publication Title

MicroRNA-125b and chemokine CCL4 expression are associated with calcific aortic valve disease.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon GSE38494
Expression data from odontogenic tumours
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The aim of the study was to elucidate the cellular origin of ameloblastoma and keratocystic odontogenic tumour, neoplasms believed to arise from dental epithelial cells, by carrying out a genome-wide expression analysis.

Publication Title

Early dental epithelial transcription factors distinguish ameloblastoma from keratocystic odontogenic tumor.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP043599
Transcriptional changes in murine adrenal glands after TSPO deletion
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Translocator protein (TSPO), previously known as the peripheral benzodiazepine receptor is a protein of unclear function in the outer mitochondrial membrane. Using TSPO gene-deleted mice, we recently demonstrated that the dogma surrounding mammalian TSPO as a cholesterol transporter essential for steroid hormone production is highly inaccurate. TSPO global knockout mice are apparently healthy and do not have any deficits in steroid hormone production. We present whole transcriptome shotgun sequencing data comparing adrenal gene expression between Tspo floxed (Tspofl/fl) and Tspo knockout (Tspo-/-) mice.

Publication Title

Peripheral benzodiazepine receptor/translocator protein global knock-out mice are viable with no effects on steroid hormone biosynthesis.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact