refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 313 results
Sort by

Filters

Technology

Platform

accession-icon SRP020493
Gene expression analysis of breast cancer cell-lines
  • organism-icon Homo sapiens
  • sample-icon 14 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Recurrent mutations in histone modifying enzymes in multiple cancer types imply key roles in tumorigenesis. However, the functional relevance of these mutations remains unknown. Here we show that the JARID1B histone H3 lysine 4 demethylase is frequently amplified and overexpressed in luminal breast tumors and a somatic point mutation of JARID1B leads to the gain of luminal-specific gene expression programs. Downregulation of JARID1B in luminal breast cancer cells induces the expression of basal cell-specific genes and growth arrest, which is partially rescued by the inhibition of TGFBR thereby indicating a key role for TGFb signaling. Integrated genome-wide analysis of JARID1B chromatin binding, histone H3 lysine trimethyl (H3K4me3) and dimethyl (H3K4me2) patterns, and gene expression profiles in luminal and basal-like breast cancer cells suggest a key role for JARID1B in luminal cell-specific gene expression programs. A significant fraction of JARID1B binding-sites overlaps with CTCF in both luminal and basal-like breast cancer cells. CTCF also co-immunoprecipitates with JARID1B and it may influence its histone demethylase (HDM) activity as the H3K4me3/me2 ratio is lower at the CTCF-overlapping compared to JARID1B-unique sites. Additionally, a heterozygous JARID1B missense mutation (K1435R) in the HCC2157 basal-like breast cancer cell line is associated with unique JARID1B chromatin-binding and gene expression patterns implying gain of luminal features. In line with this, exogenous expression of this mutant in basal-like breast cancer cells leads to a gain of JARID1B binding at many luminal-specific genes. A PARADIGM score reflecting JARID1B activity in luminal breast cancer cells is associated with poor clinical outcome in patients with luminal breast tumors. Together, our data imply that JARID1B is a luminal lineage-driving oncogene and that its therapeutic targeting may represent a novel therapeutic strategy in treatment-resistant luminal breast tumors. Overall design: RNA-Seq in breast cancer cell-lines transfected with JARID1B/CTCF/control siRNA. 50 cycles of sequencing on Illumina platform.

Publication Title

JARID1B is a luminal lineage-driving oncogene in breast cancer.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE34652
KGF effects on cutaneous SCC cells
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Keratinocyte growth factor (KGF, fibroblast growth factor-7) is a fibroblast-derived mitogen, which stimulates proliferation of epithelial cells. The expression of KGF by dermal fibroblasts is induced following injury and it promotes wound repair. However, the role of KGF in cutaneous carcinogenesis and cancer progression is not known. We have examined the role of KGF in progression of squamous cell carcinoma (SCC) of the skin.

Publication Title

Keratinocyte growth factor induces gene expression signature associated with suppression of malignant phenotype of cutaneous squamous carcinoma cells.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE73450
Tumor-Host Signaling Interaction Reveals a Systemic, Age-Dependent Splenic Immune Influence on Tumor Development [control mice]
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

The concept of age-dependent host control of cancer development raises the natural question of how these effects manifest across the host tissue/organ types with which a tumor interacts, one important component of which is the aging immune system. To investigate this, changes in the spleen, an immune nexus in the mouse, was examined for its age-dependent interactive influence on the carcinogenesis process. The model is the C57BL/6 male mice (adolescent, young adult, middle-aged, and old or 68, 143, 551 and 736 days old respectively) with and without a syngeneic murine tumor implant. Through global transcriptome analysis, immune-related functions were found to be key regulators in the spleen associated with tumor progression as a function of age with CD2, CD3, CCL19, and CCL5 being the key molecules involved. Surprisingly, other than CCL5, all key factors and immune-related functions were not active in spleens from non-tumor bearing old mice. Our findings of age-dependent tumor-spleen signaling interaction suggest the existence of a global role of the aging host in carcinogenesis. Suggested is a new avenue for therapeutic improvement that capitalizes on the pervasive role of host aging in dictating the course of this disease.

Publication Title

Tumor-host signaling interaction reveals a systemic, age-dependent splenic immune influence on tumor development.

Sample Metadata Fields

Sex, Age, Specimen part, Disease, Disease stage

View Samples
accession-icon GSE73449
Tumor-Host Signaling Interaction Reveals a Systemic, Age-Dependent Splenic Immune Influence on Tumor Development [LLC tumor bearing mice]
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

The concept of age-dependent host control of cancer development raises the natural question of how these effects manifest across the host tissue/organ types with which a tumor interacts, one important component of which is the aging immune system. To investigate this, changes in the spleen, an immune nexus in the mouse, was examined for its age-dependent interactive influence on the carcinogenesis process. The model is the C57BL/6 male mice (adolescent, young adult, middle-aged, and old or 68, 143, 551 and 736 days old respectively) with and without a syngeneic murine tumor implant. Through global transcriptome analysis, immune-related functions were found to be key regulators in the spleen associated with tumor progression as a function of age with CD2, CD3, CCL19, and CCL5 being the key molecules involved. Surprisingly, other than CCL5, all key factors and immune-related functions were not active in spleens from non-tumor bearing old mice. Our findings of age-dependent tumor-spleen signaling interaction suggest the existence of a global role of the aging host in carcinogenesis. Suggested is a new avenue for therapeutic improvement that capitalizes on the pervasive role of host aging in dictating the course of this disease.

Publication Title

Tumor-host signaling interaction reveals a systemic, age-dependent splenic immune influence on tumor development.

Sample Metadata Fields

Age, Specimen part, Disease, Disease stage

View Samples
accession-icon SRP067963
Transcriptome profiling of post-mature green seeds from Arabidopsis ddcc mutant and wild-type
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The role of on-CG methylation in seed development and dormancy remains unknown. There are four genes in charge of non-CG methylation in Arabidopsis: drm1, drm2, cmt2 and cmt3. The majority of non-CG methylation in vegetative tissues, leaf, is gone in homozygous ddcc mutant line (Hume et al., 2014). To uncover the possible role of non-CG DNA methylation in seed development and dormancy, we characterized the transcriptome of ddcc mutant in Arabidopsis post-mature green seeds using Illumina sequencing. Meanwhile, post-mature green seeds from wild type were used as control. Overall design: Illumina sequencing of transcripts from post-mature green seeds of ddcc mutant and wild type. Two biological replicates were collected.

Publication Title

Similarity between soybean and <i>Arabidopsis</i> seed methylomes and loss of non-CG methylation does not affect seed development.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP067454
Myc-dependent gene activation and repression in oncogene-addicted liver tumors (RNA-seq)
  • organism-icon Mus musculus
  • sample-icon 43 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Tumors driven by activation of the transcription factor Myc generally show oncogene addiction. However, the gene-expression programs that depend upon sustained Myc activity in those tumors remain unknown. We have addressed this issue in a model of liver carcinoma driven by a reversible tet-Myc transgene, combining gene expression profiling with the mapping of Myc and RNA Polymerase II on chromatin. Switching off the oncogene in advanced carcinomas revealed that Myc is required for the continuous activation and repression of distinct sets of genes, constituting no more than half of those deregulated during tumor progression, and an even smaller subset of all Myc-bound genes. We further showed that a Myc mutant unable to associate with the co-repressor protein Miz1 is defective in the initiation of liver tumorigenesis. Altogether, our data provide the first detailed analysis of a Myc-dependent transcriptional program in a fully developed carcinoma, revealing that the critical effectors of Myc in tumor maintenance must be included within defined subsets (ca. 1,300 each) of activated and repressed genes. Overall design: RNAseq samples of control liver (n=11), tet-Myc tumors (n=16), tet-Myc tumors with short-term Myc inactivation (n=8), tet-MycVD tumors (n=11)

Publication Title

Identification of MYC-Dependent Transcriptional Programs in Oncogene-Addicted Liver Tumors.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE66368
EphB2 promotes progression of cutaneous squamous cell carcinoma
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

EphB2 Promotes Progression of Cutaneous Squamous Cell Carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE66359
Analysis of the gene expression profile in normal human epidermal keratinocytes and cutaneous squamous cell carcinoma cell lines
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The incidence of keratinocyte-derived skin cancer, cutaneous squamous cell carcinoma (cSCC) is increasing worldwide making it the second most common metastatic skin cancer.

Publication Title

EphB2 Promotes Progression of Cutaneous Squamous Cell Carcinoma.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE66361
Analysis of the gene expression profile in cutaneous squamous cell carcinoma cells after EphB2 knockdown
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219), Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The role of Eph/ephrin signaling in numerous biological processes has been established. However, Eph/ephrin signaling has been shown to have complex role in tumor progression. The role of EphB2 receptor in the progression of cutaneous squamous cell carcinoma (cSCC) has not been studied before.

Publication Title

EphB2 Promotes Progression of Cutaneous Squamous Cell Carcinoma.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE56673
The transcriptional response to PPP3R1
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Lysosomal calcium signalling regulates autophagy through calcineurin and ​TFEB.

Sample Metadata Fields

Cell line

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact