refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing 7 of 7 results
Sort by

Filters

Technology

Platform

accession-icon GSE7164
Identification of novel genes expressed during mouse molar tooth development by microarray gene expression analysis
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

To identify genes heretofore undiscovered as critical players in the biogenesis of teeth, we have used microarray gene expression analysis of the developing mouse molar tooth (DMT) between 1 and 10 days postnatal to identify genes differentially expressed when compared to 16 control tissues (GEO accession # GSE1986). Of the top 100 genes exhibiting increased expression in the DMT, 29 were found to have been previously associated with tooth development. Differential expression of the remaining 71 genes not previously associated with tooth development was confirmed by qRT-PCR analysis. Further analysis of seven of the latter genes by mRNA in situ hybridization found that five were specific to the developing tooth in the craniofacial region (Rspo4, Papln, Amtn, Gja1, Maf). Of the remaining two, one was found to be more widely expressed (Sp7) and the other was found to be specific to the nasal serous gland, which is close to, but distinct from, the developing tooth (Vrm).

Publication Title

Identification of novel genes expressed during mouse tooth development by microarray gene expression analysis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE14671
EXPRESSION SIGNATURE TO PREDICT MAJOR CYTOGENETIC RESPONSE IN CHRONIC PHASE CML PATIENTS TREATED WITH IMATINIB
  • organism-icon Homo sapiens
  • sample-icon 58 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Newly diagnosed chronic phase chronic myeloid leukemia (CML) patients with a major cytogenetic response (MCyR) after 12 months of imatinib therapy have an excellent long-term outcome, while patients without MCyR have a high progression risk. Since patients with primary cytogenetic resistance may benefit from more intensive therapy up-front, we sought to identify biomarkers to predict MCyR.

Publication Title

A gene expression signature of CD34+ cells to predict major cytogenetic response in chronic-phase chronic myeloid leukemia patients treated with imatinib.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP062428
Temporal transcriptomics suggest that twin-peaking genes reset the clock
  • organism-icon Mus musculus
  • sample-icon 46 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The mammalian suprachiasmatic nucleus (SCN) drives daily rhythmic behavior and physiology, yet a detailed understanding of its coordinated transcriptional programmes is lacking. To reveal the true nature of circadian variation in the mammalian SCN transcriptome we combined laser-capture microdissection (LCM) and RNA-Seq over a 24-hour light / dark cycle. We show that 7-times more genes exhibited a classic sinusoidal expression signature than previously observed in the SCN. Another group of 766 genes unexpectedly peaked twice, near both the start and end of the dark phase; this twin-peaking group is significantly enriched for synaptic transmission genes that are crucial for light-induced phase-shifting of the circadian clock. 342 intergenic non-coding RNAs, together with novel exons of annotated protein-coding genes, including Cry1, also show specific circadian expression variation. Overall, our data provide an important chronobiological resource (www.wgpembroke.com/shiny/SCNseq/) and allow us to propose that transcriptional timing in the SCN is gating clock resetting mechanisms. Overall design: Pooled dissected tissue of the suprachiasmatic nucleus from five adult male mice provided one of three replicates for each of six timepoints over a 12:12 light/dark (LD) cycle (ZT2, 6, 10, 14, 18 and 22). Each biological replicate was sequenced over 3 seperate lanes using Illumina HiSeq.

Publication Title

Temporal transcriptomics suggest that twin-peaking genes reset the clock.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE18448
Genome-wide transcriptional profiling of Nf1-haploinsufficiency
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconSentrix Human-6 Expression BeadChip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Evidence of perturbations of cell cycle and DNA repair pathways as a consequence of human and murine NF1-haploinsufficiency.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE18444
Genome-wide transcriptional profiling of NF1-haploinsufficiency in human: Coriell kindred
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconSentrix Human-6 Expression BeadChip

Description

Neurofibromatosis type 1 (NF1) is a common monogenic tumor-predisposition disorder that arises secondary to mutations in the tumor suppressor gene NF1. Haploinsufficiency of NF1 fosters a permissive tumorigenic environment through changes in signalling between cells; however, the intracellular mechanisms for this tumor-promoting effect are less clear. We hypothesized that the genetic effects of NF1-haploinsufficiency may be discerned by comparison of genome-wide transcriptional profiling in somatic, non-tumor cells (LCLs) from NF1-affected and unaffected individuals.

Publication Title

Evidence of perturbations of cell cycle and DNA repair pathways as a consequence of human and murine NF1-haploinsufficiency.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE18447
Genome-wide transcriptional profiling of Nf1-haploinsufficiency in mouse
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconSentrix Human-6 Expression BeadChip

Description

Neurofibromatosis type 1 (NF1) is a common monogenic tumor-predisposition disorder that arises secondary to mutations in the tumor suppressor gene NF1. Haploinsufficiency of NF1 fosters a permissive tumorigenic environment through changes in signalling between cells; however, the intracellular mechanisms for this tumor-promoting effect are less clear. We hypothesized that the genetic effects of NF1-haploinsufficiency may be discerned by comparison of genome-wide transcriptional profiling in somatic, non-tumor cells from NF1-affected and unaffected individuals. As a cross-species filter for heterogeneity, we compared the results from two human kindreds to whole-genome transcriptional profiling in spleen-derived B-cells from age- and gender-matched Nf1+/- and wild-type mice.

Publication Title

Evidence of perturbations of cell cycle and DNA repair pathways as a consequence of human and murine NF1-haploinsufficiency.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE18445
Genome-wide transcriptional profiling of NF1-haploinsufficiency in human: ECACC kindred
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconSentrix Human-6 Expression BeadChip

Description

Neurofibromatosis type 1 (NF1) is a common monogenic tumor-predisposition disorder that arises secondary to mutations in the tumor suppressor gene NF1. Haploinsufficiency of NF1 fosters a permissive tumorigenic environment through changes in signalling between cells; however, the intracellular mechanisms for this tumor-promoting effect are less clear. We hypothesized that the genetic effects of NF1-haploinsufficiency may be discerned by comparison of genome-wide transcriptional profiling in somatic, non-tumor cells (LCLs) from NF1-affected and unaffected individuals.

Publication Title

Evidence of perturbations of cell cycle and DNA repair pathways as a consequence of human and murine NF1-haploinsufficiency.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
Didn't see a related experiment?

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact