refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 981 results
Sort by

Filters

Technology

Platform

accession-icon GSE38517
Expression data from fibroblasts derived from human normal oral mucosa, oral dysplasia and oral squamous cell carcinoma
  • organism-icon Homo sapiens
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Identification of genes that are differentially regulated in fibroblasts derived from dysplastic oral mucosa and oral squamous cell carcinoma compared to fibroblasts derived from normal oral mucosa.

Publication Title

Identification of two distinct carcinoma-associated fibroblast subtypes with differential tumor-promoting abilities in oral squamous cell carcinoma.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE2774
Identification of tumor immune evasion mechanism using P0 and P3 cell lines
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The emergence of immune resistance variants during immunotherapy is poorly understood. We generated a highly immune resistant cell line (P3) from a susceptible cell line (P0) by subjecting it to 3 rounds of in vivo immune selection. Subsequently, microarray analysis of P0 and P3 was performed to identify genes that may contribute to the increase in immune resistance.

Publication Title

Ectopic expression of vascular cell adhesion molecule-1 as a new mechanism for tumor immune evasion.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE60135
Gene-expression profiles of BMP signaling-affected SK-OV-3 cells
  • organism-icon Homo sapiens
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Bone morphogenetic proteins (BMPs) are extracellular signaling molecules that belong to the transforming growth factor beta (TGF-) superfamily. By regulating target gene transcription, BMPs control various cellular processes, such as proliferation, differentiation, apoptosis and migration.

Publication Title

The BMP signaling pathway leads to enhanced proliferation in serous ovarian cancer-A potential therapeutic target.

Sample Metadata Fields

Cell line

View Samples
accession-icon SRP013456
The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts [protein occupancy profiling]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Protein-RNA interactions are fundamental to core biological processes, such as mRNA splicing, localization, degradation and translation. We developed a photoreactive nucleotide-enhanced UV crosslinking and oligo(dT) purification approach to identify the mRNA-bound proteome using quantitative proteomics and to display the protein occupancy on mRNA transcripts by next-generation sequencing. Application to a human embryonic kidney cell line identified close to 800 proteins. Close to one third of these proteins, were neither previously annotated nor could be functionally predicted to bind RNA. Protein occupancy profiling provides a transcriptome-wide catalog of potential cis-regulatory regions on mammalian mRNAs and showed that large stretches in 3'' UTRs can be contacted by the mRNA-bound proteome, with numerous putative binding sites in regions harboring disease-associated nucleotide polymorphisms. Our observations indicate the presence of a large number of unexpected mRNA-binders with novel molecular functions participating in combinatorial post-transcriptional gene-expression networks. Overall design: We generated protein occupancy cDNA libraries for two biological replicates. Briefly, we crosslinked 4SU-labeled cells and purified protein-mRNA complexes using oligo(dT)-beads. The precipitate was treated with RNAse I to reduce the protein-crosslinked RNA fragments to a length of about 30-60 nt. To remove non-crosslinked RNA, protein-RNA complexes were precipitated with ammonium sulfate and blotted onto nitrocellulose. The RNA was recovered by Proteinase K treatment, ligated to cloning adapters, and reverse transcribed. The resulting cDNA libraries were PCR-amplified and next-generation sequenced

Publication Title

The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon SRP013463
The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Protein-RNA interactions are fundamental to core biological processes, such as mRNA splicing, localization, degradation and translation. We developed a photoreactive nucleotide-enhanced UV crosslinking and oligo(dT) purification approach to identify the mRNA-bound proteome using quantitative proteomics and to display the protein occupancy on mRNA transcripts by next-generation sequencing. Application to a human embryonic kidney cell line identified close to 800 proteins. Close to one third of these proteins, were neither previously annotated nor could be functionally predicted to bind RNA. Protein occupancy profiling provides a transcriptome-wide catalog of potential cis-regulatory regions on mammalian mRNAs and showed that large stretches in 3'' UTRs can be contacted by the mRNA-bound proteome, with numerous putative binding sites in regions harboring disease-associated nucleotide polymorphisms. Our observations indicate the presence of a large number of unexpected mRNA-binders with novel molecular functions participating in combinatorial post-transcriptional gene-expression networks. Overall design: To obtain a more detailed picture of the RNA present in the pooled precipitates of four consecutive oligo(dT)-purifications, we constructed a cDNA library by random priming of 4-thiouridine (4SU)- and 6-thioguanosine (6SG)-labeled RNA derived from UV-irradiated (365 nm)and non-irradiated cells. Digital gene expression analysis of the cDNA library of non-irradiated cells, labeled with 4SU and 6SG, was performed. To monitor the incorporation of photoreactive nucleotides into mRNA, we isolated 4SU- and 6SG-labeled RNA from the oligo(dT) precipitate of non-crosslinked cells by biotinylation and streptavidin purification (Dolken et al., 2008).

Publication Title

The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts.

Sample Metadata Fields

Treatment, Subject

View Samples
accession-icon GSE66534
The histone chaperone CAF-1 safeguards somatic cell identity during transcription factor-induced reprogramming
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The histone chaperone CAF-1 safeguards somatic cell identity.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE72741
CAF-1 safeguards somatic cell identity during factor-induced reprogramming
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 2.0 ST Array (mogene20st)

Description

Cellular differentiation involves profound changes in the chromatic landscape, yet the mechanisms by which somatic cell identity is subsequently maintained remain incompletely understood. To further elucidate regulatory pathways that safeguard the somatic state, we performed two comprehensive RNAi screens targeting chromatin factors during transcription factor-mediated reprogramming of mouse fibroblasts to induced pluripotent stem cells (iPSCs). Remarkably, subunits of the chromatin assembly factor-1 (CAF-1) complex emerged as the most prominent hits from both screens, followed by modulators of lysine sumoylation and heterochromatin maintenance. Suppression of CAF-1 increased reprogramming efficiency by several orders of magnitude and facilitated iPSC formation in as little as 4 days. Mechanistically, CAF-1 suppression led to a more accessible chromatin structure at enhancer elements early during reprogramming. These changes were accompanied by a decrease in somatic heterochromatin domains, increased binding of Sox2 to pluripotency-specific targets and activation of associated genes. Notably, suppression of CAF-1 also enhanced the direct conversion of B cells into macrophages and fibroblasts into neurons. Together, our findings reveal the histone chaperone CAF-1 as a novel regulator of somatic cell identity during transcription factor-induced cell fate transitions and provide a potential strategy to modulate cellular plasticity in a regenerative setting.

Publication Title

The histone chaperone CAF-1 safeguards somatic cell identity.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon SRP102528
Epigenetic and transcriptional analysis of mesoderm progenitor cells identifies HOPX as a novel regulator of hemogenic endothelium
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon

Description

We analyzed chromatin dynamics and transcriptional activity of human embryonic stem cell (hESC)-derived cardiac progenitor cells (CPCs) and KDR+/CD34+ endothelial cells generated from cardiogenic or hemogenic mesoderm. Using an unbiased algorithm to hierarchically rank genes modulated at the level of chromatin and transcription, we identified novel candidate regulators of mesodermal lineage determination. HOPX, a non-DNA binding homeodomain protein, was identified as a candidate regulator of blood-forming endothelial cells. We used HOPX reporter and knockout hESCs, as well as hopx loss of function studies in zebrafish, to show the requirement of HOPX in vivo and in vitro in hemato-endothelial lineage specification. Loss of HOPX does not impact endothelial fate specification but markedly reduces primitive hematopoiesis acting at least in part through suppression of Wnt/ß-catenin signaling. Single cell RNA-seq data during mouse hematopoietic development in vivo confirm a role for HOPX in hematopoietic fate. Taken together, we show that HOPX is a novel regulator of hemato-endothelial fate specification in vitro and in vivo that functionally regulates Wnt signaling to modulate primitive hematopoiesis. Overall design: 2 biological replicates were isolated from cardiac progenitor cells (CPCs) and endothelial populations derived from cardiogenic mesoderm (C-ECs) and hemogenic mesoderm (H-ECs). RNA-seq and ChIP-seq (H3K4me3 and H3K27me3) was performed for each replicate.

Publication Title

Single-Cell Transcriptomic Analysis of Cardiac Differentiation from Human PSCs Reveals HOPX-Dependent Cardiomyocyte Maturation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE64123
Human embryonic stem cell based neuro-developmental toxicity assay: response to valproic acid and carbamazepine exposure
  • organism-icon Homo sapiens
  • sample-icon 90 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Here we studied the effects of anticonvulsant drug exposure in a human embryonic stem cell (hESC) based neuro- developmental toxicity test (hESTn). During neural differentiation the cells were exposed, for either 1 or 7 days, to non-cytotoxic concentration ranges of valproic acid (VPA) or carbamazepine (CBZ), anti-epileptic drugs known to cause neurodevelopmental toxicity.

Publication Title

Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay.

Sample Metadata Fields

Time

View Samples
accession-icon GSE71242
Gene dosage imbalance contributes to chromosomal instability-induced tumorigenesis
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

Chromosomal instability (CIN) is thought to be a source of mutability in human cancer. However, CIN is highly deleterious for the cell, and the resulting aneuploidy induces metabolic stress and compromises cell fitness. Here we utilized the X-chromosome dosage compensation mechanism and changes in X-chromosome number to demonstrate in Drosophila epithelial cells the causal relationship between CIN, aneuploidy, gene dosage imbalance and tumorigenesis. Whereas the harmful effects of CIN can be buffered by resetting the X-chromosome dosage compensation to compensate for changes in X-chromosome number, interfering with the mechanisms of dosage compensation suffices to induce tumorigenesis. In addition, multiple mechanisms buffer the deleterious effects of CIN including DNA-damage repair, activation of the p38 signalling pathway, and induction of cytokine expression to promote compensatory cell proliferation. These data reveal a key role of gene dosage imbalances to CIN-induced programmed cell death and tumorigenesis and the existence of robust compensatory mechanisms.

Publication Title

Gene Dosage Imbalance Contributes to Chromosomal Instability-Induced Tumorigenesis.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact