refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 389 results
Sort by

Filters

Technology

Platform

accession-icon SRP014794
Small RNA sequencing from Arabidopsis adult leaves and profiling of Arabidopsis transcripts in response to flg22 peptide
  • organism-icon Arabidopsis thaliana
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

DNA methylation is an epigenetic mark that silences transposable elements (TEs) and repeats. Whereas the establishment and maintenance of DNA methylation are relatively well understood, little is known on their dynamics and biological relevance in plant and animal innate immunity. Here, we show that some TEs are demethylated and transcriptionally reactivated during antibacterial defense in Arabidopsis. This effect is concomitant with the down-regulation of key transcriptional gene silencing factors as well as an active demethylation process. DNA demethylation restricts multiplication and vascular propagation of the bacterial pathogen Pseudomonas syringae in leaves and, accordingly, some immune-response genes, containing repeats in their promoters, are negatively regulated by DNA methylation. This study provides evidence that DNA demethylation is part of a plant-induced immune response, potentially acting to prime transcriptional activation of some defense genes linked to Tes/repeats. We have monitored the transcript changes in Arabidopsis plants treated with a flagellin-derived peptide. Overall design: DNA methylation is closely related to 24nt sRNAs. This is why we sequenced small RNA population in our study. 5-week-old Col-0 leaf samples (treated with either water or flg22 at 1 ?M concentration for 6 h) and deep sequenced by Fasteris (Geneva) on the Illumina HiSeq 2000 platform.

Publication Title

Dynamics and biological relevance of DNA demethylation in Arabidopsis antibacterial defense.

Sample Metadata Fields

Age, Specimen part, Treatment, Subject

View Samples
accession-icon GSE64123
Human embryonic stem cell based neuro-developmental toxicity assay: response to valproic acid and carbamazepine exposure
  • organism-icon Homo sapiens
  • sample-icon 90 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

Here we studied the effects of anticonvulsant drug exposure in a human embryonic stem cell (hESC) based neuro- developmental toxicity test (hESTn). During neural differentiation the cells were exposed, for either 1 or 7 days, to non-cytotoxic concentration ranges of valproic acid (VPA) or carbamazepine (CBZ), anti-epileptic drugs known to cause neurodevelopmental toxicity.

Publication Title

Gene Expression Regulation and Pathway Analysis After Valproic Acid and Carbamazepine Exposure in a Human Embryonic Stem Cell-Based Neurodevelopmental Toxicity Assay.

Sample Metadata Fields

Time

View Samples
accession-icon GSE10014
Genomic analysis of axon pruning in Drosophila mushroom body neurons
  • organism-icon Drosophila melanogaster
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

Genomic analysis of axon pruning in Drosophila mushroom body neurons identifies the RNA-binding protein Boule as a negative regulator

Publication Title

Genomic analysis of Drosophila neuronal remodeling: a role for the RNA-binding protein Boule as a negative regulator of axon pruning.

Sample Metadata Fields

Age

View Samples
accession-icon GSE10012
Timecourse: MB neurons at the onset and early steps of axon pruning
  • organism-icon Drosophila melanogaster
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

Drosophila mushroom body (MB) neurons undergo axon pruning during metamorphosis through a process of localized degeneration of specific axon branches. Developmental axon degeneration is initiated at the onset of metamorphosis by the pre-pupal rise in the steroid hormone ecdysone. This study identifies genes that alter their expression in MB neurons at the onset and early steps of axon pruning.

Publication Title

Genomic analysis of Drosophila neuronal remodeling: a role for the RNA-binding protein Boule as a negative regulator of axon pruning.

Sample Metadata Fields

Age

View Samples
accession-icon GSE10013
EcR-dependent gene expression in MB neurons at the onset of axon pruning
  • organism-icon Drosophila melanogaster
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome Array (drosgenome1)

Description

This study identifies genes that show EcR-dependent gene expression in MB neurons at the onset of axon pruning.

Publication Title

Genomic analysis of Drosophila neuronal remodeling: a role for the RNA-binding protein Boule as a negative regulator of axon pruning.

Sample Metadata Fields

Age

View Samples
accession-icon GSE12890
Xylose metabolism in recombinant Saccharomyces cerevisiae
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

In the present study transcriptome and proteome of recombinant, xylose-utilising S. cerevisiae grown in aerobic batch cultures on xylose were compared with glucose-grown cells both in glucose repressed and derepressed states. The aim was to study at genome-wide level how signalling and carbon catabolite repression differed in cells grown on either glucose or xylose. The more detailed knowledge about is xylose sensed as a fermentable carbon source, capable of catabolite repression like glucose, or is it rather recognised as a non-fermentable carbon source is important in achieving understanding for further engineering this yeast for more efficient anaerobic fermentation of xylose.

Publication Title

Regulation of xylose metabolism in recombinant Saccharomyces cerevisiae.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE19748
Gene expression screening during early granulation tissue formation (I)
  • organism-icon Rattus norvegicus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

Hydroxyapatite-coated cellulose induces a quicker and stronger inflammatory response compared to uncoated cellulose. Furthermore, the coated cellulose increases the homing at circulating bone-marrow derived progenitor cells. For this reason, Illumina microarray was used to study the early gene expression of the forming granulation tissue in the hydroxyapatite-coated sponges.

Publication Title

Hemoglobin expression in rat experimental granulation tissue.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon GSE22832
Transcriptional response of Sacchromyces cerevisiae to change in oxygen provision
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 26 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome 2.0 Array (yeast2)

Description

In industrial fermentations of Saccharomyces cerevisiae, transient changes in oxygen concentration commonly occur and it is important to understand the behaviour of cells during these changes. Saccharomyces cerevisiae CEN.PK113-1A was grown in glucose-limited chemostat culture with 1.0% and 20.9% O2 in the inlet gas (D= 0.10 /h, pH5, 30C). After steady state was achieved, oxygen was replaced with nitrogen and cultures were followed until new steady state was achieved. The overall responses to anaerobic conditions of cells initially in different conditions were very similar. Independent of initial culture conditions, transient downregulation of genes related to growth and cell proliferation, mitochondrial translation and protein import, and sulphate assimilation was seen. In addition, transient or permanent upregulation of genes related to protein degradation, and phosphate and amino acid uptake was observed in all cultures. However, only in the initially oxygen-limited cultures was a transient upregulation of genes related to fatty acid oxidation, peroxisomal biogenesis, oxidative phosphorylation, TCA cycle, response to oxidative stress, and pentose phosphate pathway observed. Furthermore, from the initially oxygen-limited conditions, a rapid response around the metabolites of upper glycolysis and the pentose phosphate pathway was seen, while from the initially fully aerobic conditions, a slower response around the pathways for utilisation of respiratory carbon sources was observed.

Publication Title

Transcriptional responses of Saccharomyces cerevisiae to shift from respiratory and respirofermentative to fully fermentative metabolism.

Sample Metadata Fields

Time

View Samples
accession-icon GSE55838
Mouse isolated kidney preglomerular arterioles: wild type vs conditional knockout of RBP-J in renin cells
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

mRNA profiling of mouse kidney preglomerular arterioles comparing wild type arterioles vs.arterioles from mice having deletion of RBP-J in cells of the renin lineage

Publication Title

Recombination signal binding protein for Ig-κJ region regulates juxtaglomerular cell phenotype by activating the myo-endocrine program and suppressing ectopic gene expression.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE55618
Toxicogenomic profiling in the whole zebrafish embryo after exposure to reference hepatotoxicants.
  • organism-icon Danio rerio
  • sample-icon 188 Downloadable Samples
  • Technology Badge Icon Affymetrix Genechip Zebrafish ST Genome Array 1.1 (zebgene11st)

Description

Zebrafish embryos have been proposed as an attractive alternative model system for hepatotoxicity testing.

Publication Title

A transcriptomics-based hepatotoxicity comparison between the zebrafish embryo and established human and rodent in vitro and in vivo models using cyclosporine A, amiodarone and acetaminophen.

Sample Metadata Fields

Compound

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact