refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 695 results
Sort by

Filters

Technology

Platform

accession-icon GSE6689
Expression data during stem cell differentiation
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Stem cell development requires selection of specific genetic programs to direct cellular fate. Using microarray technology, we profile expression trends at selected timepoints during stem cell differentiation to characterize these changes.

Publication Title

Genomic chart guiding embryonic stem cell cardiopoiesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE61732
Human Staufen1 associates to miRNAs involved in neuronal cell differentiation and is required for correct dendritic formation
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Double-stranded RNA-binding proteins are key elements in the intracellular localization of mRNA and its local translation. Staufen is a double-stranded RNA binding protein involved in the localised translation of specific mRNAs during Drosophila early development and neuronal cell fate. The human homologue Staufen1 forms RNA-containing complexes that include proteins involved in translation and motor proteins to allow their movement within the cell, but the mechanism underlying translation repression in these complexes is poorly understood. Here we show that human Staufen1-containing complexes contain essential elements of the gene silencing apparatus, like Ago1-3 proteins, and we describe a set of miRNAs specifically associated to complexes containing human Staufen1. Among these, miR124 stands out as particularly relevant because it appears enriched in human Staufen1 complexes and is over-expressed upon differentiation of human neuroblastoma cells in vitro. In agreement with these findings, we show that expression of human Staufen1 is essential for proper dendritic arborisation during neuroblastoma cell differentiation, yet it is not necessary for maintenance of the differentiated state, and suggest potential human Staufen1 mRNA targets involved in this process.

Publication Title

Human Staufen1 associates to miRNAs involved in neuronal cell differentiation and is required for correct dendritic formation.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE42997
The ISWI ATPase Snf2L is required for superovulation and regulates Fgl2 in differentiating mouse granulosa cells
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We investigate the role of Snf2l in ovaries by characterizing a mouse bearing an inactivating deletion on the ATPase domain of Snf2l (Ex6DEL). Snf2l mutant mice produce significantly fewer eggs than control mice when superovulated. Thus, gonadotropin stimulation leads to a significant deficit in secondary follicles and an increase in abnormal antral follicles. We profiled the expression of granulosa cells from Snf2l WT and Ex6DEL mice treated with pregnant mares' serum gonadotropin followed by human chorionic gonadotropin

Publication Title

The imitation switch ATPase Snf2l is required for superovulation and regulates Fgl2 in differentiating mouse granulosa cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE108607
SUMOylation Regulates Transcription by the Progesterone Receptor A Isoform in a Target Gene Selective Manner
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Luminal breast cancers express estrogen (ER) and progesterone (PR) receptors, and respond to endocrine therapies. However, some ER+PR+ tumors display intrinsic or acquired resistance, possibly related to PR. Two PR isoforms, PR-A and PR-B, regulate distinct gene subsets that may differentially influence tumor fate. A high PR-A:PR-B ratio is associated with poor prognosis and tamoxifen resistance. We speculate that excessive PR-A marks tumors that will relapse early. Here we address mechanisms by which PR-A regulate transcription, focusing on SUMOylation. We use receptor mutants and synthetic promoter/reporters to show that SUMOylation deficiency or the deSUMOylase SENP1 enhance transcription by PR-A, independent of the receptors dimerization interface or DNA binding domain. De-SUMOylation exposes the agonist properties of the antiprogestin RU486. Thus, on synthetic promoters, SUMOylation functions as an independent brake on transcription by PR-A. What about PR-A SUMOylation of endogenous human breast cancer genes? To study these, we used gene expression profiling. Surprisingly, PR-A SUMOylation influences progestin target genes differentially, with some upregulated, others downregulated, and others unaffected. Hormone-independent gene regulation is also PR-A SUMOylation dependent. Several SUMOylated genes were analyzed in clinical breast cancer database. In sum, we show that SUMOylation does not simply repress PR-A. Rather, it regulates PR-A activity in a target selective manner including genes associated with poor prognosis, shortened survival, and metastasis.

Publication Title

SUMOylation Regulates Transcription by the Progesterone Receptor A Isoform in a Target Gene Selective Manner.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE45271
17-estradiol accelerates ovarian tumour progression in vivo though the upregulation of GREB1
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Exogenous 17-estradiol (E2) accelerates the progression of ovarian cancer in the transgenic tgCAG-LS-TAg mouse model of the disease. We hypothesized that E2 has direct effects on ovarian cancer cells and this study was designed to determine the molecular mechanisms by which E2 accelerates ovarian tumour progression. Mouse ovarian cancer ascites (MASE2) cell lines were derived from tgCAG-LS-TAg mice. Following intraperitoneal engraftment of MASE2 into SCID mice, exogenous E2 significantly decreased the survival time and increased the tumour burden.

Publication Title

17β-estradiol upregulates GREB1 and accelerates ovarian tumor progression in vivo.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE11843
RNA species bound by deiminated and non-deiminated MA-Brent-1 (bhatt-affy-mouse-581641)
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

We have identified loss of deiminated MA-Brent-1 (an RNA and export binding protein) in the retinal ganglion cells (RGCs) in multiple sclerosis and in glaucoma eyes compared to normal controls. Deimination refers to posttranslational modification of protein bound arginine (not free arginine) in citrulline. Our preliminary studies suggest binding of different repertoire of RNA by non-deiminated and deiminated MA-Brent-1. In vitro, in neurites of cultured RGCs and hippocampal neurons, the select mRNA translation is enhanced by addition of deiminated but not non-deiminated MA-Brent-1. These observations suggest that lack of deiminated MA-Brent-1 has consequences for protein synthesis, remodeling and plasticity of RGCs/neurons. Identification of RNA species bound by deiminated and non-deiminated MA-Brent-1 will enable us there further verification and determining the role that deimination plays in biological function of MA-Brent-1 in multiple sclerosis and glaucoma. To summarize identification of RNA species bound by deiminated and non deiminated MA-Brent-1 will enable us to gain further insight into role of deimination in the overall disease process.

Publication Title

The role of deimination in ATP5b mRNA transport in a transgenic mouse model of multiple sclerosis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE43608
Gene expression profile of HCT116 exposed to chronic hypoxia
  • organism-icon Homo sapiens
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To identify genes involved in survival to prolonged hypoxia we exposed HCT116 to hypoxia for 3 days. Control cells were exposed to normoxic conditions.

Publication Title

Autocrine production of IL-11 mediates tumorigenicity in hypoxic cancer cells.

Sample Metadata Fields

Disease, Disease stage, Cell line, Treatment

View Samples
accession-icon GSE152073
Gene expression data from Brazilian SPAH study
  • organism-icon Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

This study is part of previous epidemiologic project, including a population-based survey (Sao Paulo Ageing & Health study (SPAH Study). The data from this study was collected between 2015 to 2016 and involved elderly women (ages ≥65 yeas) living in the Butanta district, Sao Paulo. The purpose of the study was identification of association between transcriptome and the osteo metabolism diseases phenotype, like osteoporosis, vertebral fracture and coronary calcification.

Publication Title

Overexpression of SNTG2, TRAF3IP2, and ITGA6 transcripts is associated with osteoporotic vertebral fracture in elderly women from community.

Sample Metadata Fields

Sex, Age

View Samples
accession-icon GSE25763
Comparative expression profiling identifies differential roles for Myogenin and p38 MAPK signaling in myogenesis
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Mitogen activated protein kinase (MAPK) signaling regulates differentiation of many cell types. During myogenesis in particular, p38a MAPK (MAPK14) phosphorylates multiple transcriptional regulators to modulate muscle-specific gene expression. Among the p38a MAPK modulated genes is the muscle-specific transcriptional regulator Myogenin (Myog) that is also essential to complete the muscle differentiation program, and while it is known that both p38a MAPK and Myog are critically required for myogenesis, the individual contribution of each of these proteins is poorly defined. Here we show that Myog expression (in the absence of p38a MAPK signaling) is sufficient to establish expression of many late markers of muscle differentiation and to mediate cell migration. However, Myog expression alone did not led to the formation of multinucleated muscle cells, highlighting a critical role for p38a MAPK in myoblast fusion. Using comparative microarray analysis we identified p38a MAPK-dependent genes that are not regulated by Myog

Publication Title

Comparative expression profiling identifies differential roles for Myogenin and p38α MAPK signaling in myogenesis.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE46373
Change of fate comitment in adult neural progenitor cells subjected to chronic inflammation
  • organism-icon Rattus norvegicus
  • sample-icon 54 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

Neural progenitor cells (NPCs) have regenerative capabilities that are activated during inflammation. By measuring the global transcriptome and performing functional studies, we aimed at elucidating if and how NPCs from the non-germinal niche of the spinal cord differ from germinal niche NPCs, here represented by the subventricular zone (SVZ) NPCs. Moreover, we investigated how these cells are affected by chronic inflammation modeled by Experimental Autoimmune Encephalomyelitis (EAE). NPCs were isolated and propagated from the SVZ and cervical, thoracic and caudal regions of the spinal cord from healthy rats and rats subjected to EAE. Using Affymetrix microarray analyses, the global transcriptome was measured in the different NPC populations both in undifferentiated and differentiated cultures. These analyses were paralleled by differentiation studies and quantitative RT-PCR of differentiation-specific genes.

Publication Title

Change of fate commitment in adult neural progenitor cells subjected to chronic inflammation.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact