refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 506 results
Sort by

Filters

Technology

Platform

accession-icon GSE43891
Expression profiling in bone-marrow-derived neutrophils of lcn2 deficient mouse
  • organism-icon Mus musculus
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Impaired neutrophil function in 24p3 null mice contributes to enhanced susceptibility to bacterial infections.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE43889
Gene expression profiling in bone-marrow-derived neutrophils of lcn2 deficient mouse
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Lipocalin 24p3 (24p3) is a neutrophil secondary granule protein. 24p3 is also a siderocalin, which binds several bacterial siderophores. It was therefore proposed that synthesis and secretion of 24p3 by stimulated macrophages or release of 24p3 upon neutrophil degranulation sequesters iron-laden siderophores to attenuate bacterial growth. Accordingly, 24p3-deficient mice are susceptible to bacterial pathogens whose siderophores would normally be chelated by 24p3. Specific granule deficiency (SGD) is a rare congenital disorder characterized by complete absence of proteins in secondary granules. Neutrophils from SGD patients, who are prone to bacterial infections, lack normal functions but the potential role of 24p3 in neutrophil dysfunction in SGD is not known. Here we show that neutrophils from 24p3-deficient mice are defective in many neutrophil functions. Specifically, neutrophils in 24p3-deficient mice do not extravasate to sites of infection and are defective for chemotaxis. A transcriptome analysis revealed that genes that control cytoskeletal reorganization are selectively suppressed in 24p3-deficient neutrophils. Additionally, small regulatory RNAs (miRNAs) that control upstream regulators of cytoskeletal proteins are also increased in 24p3-deficient neutrophils. Further, 24p3-deficient neutrophils failed to phagocytose bacteria, which may account for the enhanced sensitivity of 24p3-deficient mice to both intracellular (Listeria monocytogenes) and extracellular (Candida albicans, Staphylococcus aureus) pathogens. Interestingly, Listeria does not secrete siderophores and additionally, the siderophore secreted by Candida is not sequestered by 24p3. Therefore, the heightened sensitivity of 24p3-deficient mice to these pathogens is not due to sequestration of siderophores limiting iron availability, but is a consequence of impaired neutrophil function.

Publication Title

Impaired neutrophil function in 24p3 null mice contributes to enhanced susceptibility to bacterial infections.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE36392
Expression data from pulmonary Type 2 Myeloid (T2M) cells, Eosinophils, Neutrophils, and Macrophages, from IL-25 treated 4get mice
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Many symptoms associated with allergic asthma result from the sequelae of type 2 inflammation. Interleukin (IL)-25 promotes type 2 inflammatory responses, and T2M cells represent an IL-4 and IL-13 producing granulocytic IL-25 responsive population.

Publication Title

Interleukin-25 induces type 2 cytokine production in a steroid-resistant interleukin-17RB+ myeloid population that exacerbates asthmatic pathology.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE13245
Hepatic gene expression during the development of experimental biliary atresia in different mouse strains
  • organism-icon Mus musculus
  • sample-icon 5 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Biliary atresia (BA) is a rare cholestatic disease of unknown etiology that affects infants and shows an incidence of 1 out of 18,000 live births in Europe (1). The first therapeutic option is a timely performed portoenterostomy. However, the majority of patients suffer from a progressive inflammatory process, which leads to complete destruction of the extra- and intrahepatic biliary system followed by end-stage liver cirrhosis. Hence, BA is the leading indication for pediatric liver transplantation worldwide (2, 3). To understand the pathogenesis of the disease and improve theoutcome of BA patients, research has focused on the inflammatory process in liver and bile ducts, in which several factors are remarkably elevated, such as activated CD4 and CD8 T-cells, TNF alpha,IFN alpha and other proinflammatory TH1 cytokines (3-8). By the time of diagnosis, however, the disease has already reached an advanced state, characterized by the complete obstruction of the extrahepatic bile ducts with impaired bile flow and fibrosis or cirrhosis of the liver. Therefore, studies in humans focusing on the trigger mechanism of BA are limited due to the paucity of liver and availability of bile duct tissue for research. One infectious animal model has been developed, in which newborn Balb/c mice exclusively show the experimental BA phenotype after infection with rhesus rotavirus (RRV) (9, 10). This model allows the analysis of the inflammatory reactions in liver and bile ducts at early steps in the development of bile duct atresia (11-20). Furthermore, inbred mouse strains have been shown to have a different susceptibility for the development of experimental BA, suggesting that Balb/c mice have an immunological gap responsible for disease progression (10, 12). The aim of this study was to identify key genes responsible for the BA phenotype by comparing the transcriptomes at an early time point after virus infection, i.e. before bile duct atresia, between two mouse strains with different susceptibilities to BA. Differences in the virus titration and the clinical course of infected mice were analyzed, and variations in the hepatic gene response assessed by comparative microarray assays were correlated to variances in the hepatic inflammatory reaction.

Publication Title

Susceptibility to experimental biliary atresia linked to different hepatic gene expression profiles in two mouse strains.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE18206
Analysis of human in vivo irritated epidermis: differential profiles induced by sodium lauryl sulphate and nonanoic acid
  • organism-icon Homo sapiens
  • sample-icon 41 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Irritant contact dermatitis (ICD) pathogenesis is not completely understood and the genes participating in the epidermal response towards chemical irritants are only partly known. It is commonly accepted that different irritants have different mechanisms of action in the development of ICD. To define the differential molecular events induced in the epidermis by different irritants, we collected sequential biopsies (, 4 and 24 hours after a single exposure and at day 11 after repeated exposure) from human volunteers exposed to sodium lauryl sulphate (SLS) or nonanoic acid (NON). Gene expression analysis using high-density oligonucleotide microarrays revealed essentially different pathway responses h after exposure: NON transiently induced the IL-6 pathway as well as a number of mitogen activated signalling cascades including ERK and growth factor receptor signalling, whereas SLS transiently downregulated cellular energy metabolism pathways. Differential expression of the cyclooxygenase-2 and matrix metalloproteinase 3 transcripts was confirmed immunohistochemically. After cumulative exposure, 883 genes were differentially expressed while 26 suggested common biomarkers were identified . In conclusion, we bring new insights into two hitherto less well elucidated phases of skin irritancy: the very initial as well as the late phase after single and cumulative exposure, respectively.

Publication Title

Genome-wide expression analysis of human in vivo irritated epidermis: differential profiles induced by sodium lauryl sulfate and nonanoic acid.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE86181
Evidence of two distinct functionally specialized fibroblast lineages in breast stroma
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Background: The terminal duct lobular unit (TDLU) is the most dynamic structure in the human breast and the putative site of origin of human breast cancer. Although stromal cells contribute to a specialized microenvironment in many organs, this component remains largely understudied in the human breast. We here demonstrate the impact on epithelium of two lineages of breast stromal fibroblasts, one of which accumulates in the TDLU while the other resides outside the TDLU in the interlobular stroma. Methods: The two lineages are prospectively isolated by FACS based on different expression levels of CD105 and CD26. The characteristics of the two fibroblast lineages are assessed by immunocytochemical staining and gene expression analysis. The differentiation capacity of the two fibroblast populations is determined by exposure to specific differentiating conditions followed by analysis of adipogenic and osteogenic differentiation. To test whether the two fibroblast lineages are functionally imprinted by their site of origin, single cell sorted CD271low/MUC1high normal breast luminal epithelial cells are plated on fibroblast feeders for the observation of morphological development. Epithelial structure formation and polarization is shown by immunofluorescence and digitalized quantification of immunoperoxidase stained cultures. Results: Lobular fibroblasts are CD105high/CD26low while interlobular fibroblasts are CD105low/CD26high. Once isolated the two lineages remain phenotypically stable and functionally distinct in culture. Lobular fibroblasts have properties in common with bone marrow derived mesenchymal stem cells and they specifically convey growth and branching morphogenesis of epithelial progenitors. Conclusions: Two distinct functionally specialized fibroblast lineages exist in the normal human breast, of which the lobular fibroblasts have properties in common with mesenchymal stem cells and support epithelial growth and morphogenesis. We propose that lobular fibroblasts constitute a specialized microenvironment for human breast luminal epithelial progenitors, i.e. the putative precursors of breast cancer.

Publication Title

Evidence of two distinct functionally specialized fibroblast lineages in breast stroma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon E-MEXP-114
Transcription profiling of hypothalamus, liver, kidney, ovaries and testis from male and female humans and mice
  • organism-icon Mus musculus, Homo sapiens
  • sample-icon 71 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a), Affymetrix Human Genome U133A Array (hgu133a)

Description

Compared differentially express genes by sex in mouse for the following tissues: hypothalamus, liver, kidney, ovaries and testis (3 biological x 2 technical replicates for each tissues/sex). We used Affymetrix MOE430A Genechip arrays.

Publication Title

Major molecular differences between mammalian sexes are involved in drug metabolism and renal function.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE16515
Expression data from Mayo Clinic Pancreatic Tumor and Normal samples
  • organism-icon Homo sapiens
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We used microarrays to identify the expression differences of FKBP5 gene between the pancreatic tumor and normal samples.On average normal samples had more FKBP5 expression compared to tumor samples

Publication Title

FKBP51 affects cancer cell response to chemotherapy by negatively regulating Akt.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE15101
Extraction of high-quality epidermal RNA after NH4SCN induced dermo-epidermal separation of 4 mm human skin biopsies
  • organism-icon Homo sapiens
  • sample-icon 37 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

To obtain a separation of the epidermal and dermal compartments in order to examine compartment specific biological mechanisms in the skin we incubated 4 mm human skin punch biopsies in ammonium thiocyanate (NH4SCN). We wanted to test 1) the histological quality of the dermo-epidermal separation obtained by different incubation times 2) the amount and quality of extractable epidermal RNA, and 3) its impact on sample RNA expression profiles assessed by large-scale gene expression microarray analysis in both normal and inflamed skin. At 30 minutes incubation, the split between dermis and epidermis was not always histologically well-defined (i.e. occurred partly intra-epidermally) but varied between subjects. Consequently, curettage along the dermal surface of the biopsy was added to the procedure. This modified method resulted in an almost perfect separation of the epidermal and dermal compartments and satisfactory amounts of high-quality RNA were obtained. Hybridization to Affymetrix HG_U133A 2.0 GeneChips showed that ammonium thiocyanate incubation had a minute effect on gene expression resulting in only one significantly downregulated gene (cystatin E/M). We conclude that epidermis can be reproducibly and almost completely separated from the dermis of 4 mm skin biopsies by 30 min incubation in 3.8% ammonium thiocyanate combined with curettage of the dermal surface, producing high-quality RNA suitable for transcriptional analysis. Our refined method of dermo-epidermal separation will undoubtedly prove valuable in the many different settings, where the epidermal and dermal compartments need to be evaluated separately.

Publication Title

Extraction of high-quality epidermal RNA after ammonium thiocyanate-induced dermo-epidermal separation of 4 mm human skin biopsies.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE32455
Cancer stem cell subpopulations within the CD44high human breast cancer stem cell compartment
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

The CD44hi compartment in human breast cancer is enriched in tumor-initiating cells, however the functional heterogeneity within this subpopulation remains poorly defined. From a human breast cancer cell line with a known bi-lineage phenotype we have isolated and cloned two CD44hi populations that exhibited mesenchymal/Basal B and luminal/Basal A features, respectively. Rather than CD44+/CD24-,Basal B (G4) cells, only CD44hi/CD24lo, epithelioid Basal A (A4) cells retained a tumor-initiating capacity in NOG mice, form mammospheres and exhibit resistance to standard chemotherapy.

Publication Title

Functional heterogeneity within the CD44 high human breast cancer stem cell-like compartment reveals a gene signature predictive of distant metastasis.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact