refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 506 results
Sort by

Filters

Technology

Platform

accession-icon GSE54356
Gene regulation in denervated hairy skin of the adult rat
  • organism-icon Rattus norvegicus
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

This study aimed to quantify the regulation of transcripts in the hairy skin of the back of adult rats in the condition of loss of sensory and autonomic (sympathetic) innervation (i.e., denervated). Denervated skin has reduced wound healing capacity, reduced proliferation of epidermal progenitor cells, and also expresses factors that regulate ingrowth of sensory and sympathetic axons from neighboring regions of innervated skin. It was expected that this quantification f transcript regulation would offer insight into the general and specific mechanisms that may contribute to these important biological processes.

Publication Title

categoryCompare, an analytical tool based on feature annotations.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE60148
Role of milk fat globule membrane (MFGM) in modulating gene expression in humans
  • organism-icon Homo sapiens
  • sample-icon 49 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.1 ST Array (hugene21st)

Description

The aim of this study was to investigate if milk fat globule membrane (MFGM) enclosing the dairy fat influence peripheral blood mononuclear cells (PBMC) gene expression. This study was a 8-week single-blind, randomized, controlled isocaloric trial with two parallel groups including overweight (mean BMI: 28) adult women (n=30). All subjects consumed 40 g dairy fat per day either as cream (MFGM diet) or as butter oil (control diet).

Publication Title

Potential role of milk fat globule membrane in modulating plasma lipoproteins, gene expression, and cholesterol metabolism in humans: a randomized study.

Sample Metadata Fields

Age, Specimen part, Time

View Samples
accession-icon GSE72551
Transcriptional changes in sensory ganglion associated with primary afferent collateral sprouting in spared dermatome model
  • organism-icon Rattus norvegicus
  • sample-icon 19 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Genome 230 2.0 Array (rat2302)

Description

Primary afferent collateral sprouting (PACS) is a process whereby non-injured primary afferent neurons respond to some stimulus by extending new branches from existing axons. In the model used here (spared dermatome), the intact sensory neurons respond to the denervation of adjacent areas of skin by sprouting new axon branches into that adjacent denervated territory. Neurons of both the central and peripheral nervous systems undergo this process, which contributes to both adaptive and maladaptive plasticity. Investigations of gene expression changes associated with PACS can provide a better understanding of the molecular mechanisms controlling this process. Consequently, it can be used to develop treatment for spinal cord injury to promote functional recovery.

Publication Title

Transcriptional changes in sensory ganglia associated with primary afferent axon collateral sprouting in spared dermatome model.

Sample Metadata Fields

Sex, Specimen part, Time

View Samples
accession-icon GSE58350
Human leukocytes from 6 volunteers before and 2h after pectin capsules consumption
  • organism-icon Homo sapiens
  • sample-icon 36 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Dietary methanol regulates human gene activity.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE58348
Human leukocytes from 6 volunteers before and 2h after pectin capsules consumption (I)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH into toxic formaldehyde (FA). Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and the modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) in volunteers after pectin intake showed various responses for 30 differentially regulated mRNAs. Most of the mRNAs were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes did not show significant change. A qRT-PCR analysis of volunteer WBC after pectin and red wine intake confirmed the complicated dependence between plasma MeOH content and the mRNA accumulation of previously identified genes, namely GAPDH and SNX27, and MME, SORL1, DDIT4, HBA and HBB genes revealed in this study. We hypothesized that human plasma MeOH, which is replenished from endogenous and exogenous sources (diet), has an impact on the WBC mRNA levels of genes involved in AD pathogenesis and signaling.

Publication Title

Dietary methanol regulates human gene activity.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE58349
Human leukocytes from 6 volunteers before and 2h after pectin capsules consumption (II)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH into toxic formaldehyde (FA). Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and the modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) in volunteers after pectin intake showed various responses for 30 differentially regulated mRNAs. Most of the mRNAs were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes did not show significant change. A qRT-PCR analysis of volunteer WBC after pectin and red wine intake confirmed the complicated dependence between plasma MeOH content and the mRNA accumulation of previously identified genes, namely GAPDH and SNX27, and MME, SORL1, DDIT4, HBA and HBB genes revealed in this study. We hypothesized that human plasma MeOH, which is replenished from endogenous and exogenous sources (diet), has an impact on the WBC mRNA levels of genes involved in AD pathogenesis and signaling.

Publication Title

Dietary methanol regulates human gene activity.

Sample Metadata Fields

Sex, Age, Specimen part, Subject

View Samples
accession-icon GSE58364
Human leukocytes from 6 volunteers before and 2h after pectin capsules consumption (IV)
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Methanol (MeOH) is considered to be a poison in humans because of the alcohol dehydrogenase (ADH)-mediated conversion of MeOH into toxic formaldehyde (FA). Our recent genome-wide analysis of the mouse brain demonstrated that an increase in endogenous MeOH after ADH inhibition led to a significant increase in the plasma MeOH concentration and the modification of mRNA synthesis. These findings suggest endogenous MeOH involvement in homeostasis regulation by controlling mRNA levels. Here, we demonstrate directly that study volunteers displayed increasing concentrations of MeOH and FA in their blood plasma when consuming citrus pectin, ethanol and red wine. A microarray analysis of white blood cells (WBC) in volunteers after pectin intake showed various responses for 30 differentially regulated mRNAs. Most of the mRNAs were somehow involved in the pathogenesis of Alzheimer's disease (AD). There was also a decreased synthesis of hemoglobin mRNA, HBA and HBB, the presence of which in WBC RNA was not a result of red blood cells contamination because erythrocyte-specific marker genes did not show significant change. A qRT-PCR analysis of volunteer WBC after pectin and red wine intake confirmed the complicated dependence between plasma MeOH content and the mRNA accumulation of previously identified genes, namely GAPDH and SNX27, and MME, SORL1, DDIT4, HBA and HBB genes revealed in this study. We hypothesized that human plasma MeOH, which is replenished from endogenous and exogenous sources (diet), has an impact on the WBC mRNA levels of genes involved in AD pathogenesis and signaling.

Publication Title

Dietary methanol regulates human gene activity.

Sample Metadata Fields

Sex, Age, Specimen part

View Samples
accession-icon GSE85167
Expression data from rat peripheral blood mononuclear cells (PBMCs)
  • organism-icon Rattus norvegicus
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Gene 1.0 ST Array (ragene10st)

Description

The effect of cafeteria (CAF) diet in PBMC gene expression was analyzed in two inbred rat strains

Publication Title

Identification of a nutrient-sensing transcriptional network in monocytes by using inbred rat models on a cafeteria diet.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE97873
An embryonic system to assess Wnt transcriptional targets: Comparing opposing Wnt pathways and transcriptional activation and repression.
  • organism-icon Drosophila melanogaster
  • sample-icon 20 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

During animal development, signals determine and organize a vast number of complex tissues using a very small number of signal transduction pathways. These developmental signaling pathways determine cell fates through a coordinated transcriptional response that remains poorly understood. The Wnt pathway is involved in a variety of these cellular functions, and its signals are transmitted in part through a -catenin/TCF transcriptional complex. Here we report an in vivo Drosophila assay that we used to distinguish between activation, de-repression and repression of transcriptional responses, separating upstream and downstream pathway activation and canonical/non-canonical Wnt signals in embryos. We find a specific set of genes downstream of both -catenin and TCF with an additional group of genes regulated by Wnt. The non-canonical Wnt4 regulates a separate cohort of genes. We correlate transcriptional changes with phenotypic outcomes of cell differentiation and embryo size, showing our model can be used to characterize developmental signaling compartmentalization in vivo.

Publication Title

An embryonic system to assess direct and indirect Wnt transcriptional targets.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE23750
Role of REG 1 in Entamoeba histolytica colitis
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

Differential expression was used to access gene differences after Entamoeba histolytica infection.

Publication Title

The expression of REG 1A and REG 1B is increased during acute amebic colitis.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact