refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 25 results
Sort by

Filters

Technology

Platform

accession-icon GSE119634
Modulation of gene expression in rat muscle cells following treatment with nanoceria in different gravity regimes
  • organism-icon Rattus norvegicus
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Rat Clariom S Assay (clariomsrat)

Description

The study evaluates potential protective effects of cerium oxide nanoparticles (nanoceria) against oxidative stress in muscle tissue, both on ground and in space

Publication Title

Modulation of gene expression in rat muscle cells following treatment with nanoceria in different gravity regimes.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon SRP069063
Transcriptomic profiling discloses molecular and cellular events related to neuronal differentiation in SH-SY5Y cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq1000

Description

Human SH-SY5Y neuroblastoma cells are widely utilized in in vitro studies to dissect out pathogenetic mechanisms of neurodegenerative disorders. These cells are considered as neuronal precursors and differentiate into more mature neuronal phenotypes under selected growth conditions. In this study, we performed systematic transcriptomic (RNA-seq) and bioinformatic analysis to pinpoint pathways and cellular processes underlying neuronal differentiation of SH-SY5Y cells according to a two-step paradigm: retinoic acid treatment followed by enriched neurobasal medium. Categorization of 1989 differentially expressed genes (DEGs) identified in differentiated cells outlined meaningful biological functions associated with changes in cell morphology including remodelling of plasma membrane and cytoskeleton, neuritogenesis. Seventy-three DEGs were assigned to Axonal Guidance Signalling pathway, and the expression of selected gene products such as neurotrophin receptors, the functionally related SLITRK6, and semaphorins, was validated by immunoblotting. Along with these findings, the differentiated cells exhibited the ability to elongate longer axonal process as assessed by the morphometric evaluation. Recognition of molecular events occurring in differentiated SH-SY5Y cells is necessary to accurately interpret the cellular responses to specific stimuli in studies on disease pathogenesis. Overall design: Comparison of cell line SH-SY5Y differentiated and undifferentiated.

Publication Title

Transcriptomic Profiling Discloses Molecular and Cellular Events Related to Neuronal Differentiation in SH-SY5Y Neuroblastoma Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE10580
Genes regulated by PRDM5 in U2OS cells.
  • organism-icon Homo sapiens
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

PRDM5 is a recently identified member of the PRDM family of proteins, which functions as a transcriptional repressor by recruiting histone methyltransferase G9A to DNA, and behaves as a putative tumor suppressor in different types of cancer.

Publication Title

The tumor suppressor PRDM5 regulates Wnt signaling at early stages of zebrafish development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP049391
Next-Generation Sequencing Analysis Reveals Differential Expression Profiles of miRNA-mRNA Target Pairs in KSHV-Infected Cells [mRNA-Seq]
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

This SuperSeries is composed of the SubSeries listed below. Purpose: Kaposi’s sarcoma (KS)-associated herpesvirus (KSHV) causes several lymphoproliferative disorders, including KS, a common AIDS-associated malignancy. Cellular and viral microRNAs (miRNAs) have been shown to play important roles in regulating the expression of genes in oncogenesis. Herpesviruses, including KSHV, encode for miRNAs that are involved in angiogenesis, inflammation and apoptosis. A better knowledge of the miRNA-mediated pathways that regulate KSHV infection is therefore essential for an improved understanding of viral infection and pathogenesis. Methods: In this study, we used deep sequencing to analyze miRNA, both viral and human, and mRNA expression in KS tumor-derived human cells. Results: This approach revealed 153 differentially expressed human miRNAs between KSHV-positive and -negative cells. Differential expression of eight miRNAs was independently confirmed by qRT-PCR. We additionally showed that a majority (~73%) of KSHV-regulated miRNAs are down-regulated, including most members of the 14q32 miRNA cluster. Specifically, human miR-409-3p, which is known to target the pro-angiogenic growth factor angiogenin and the inflammation marker fibrinogen-beta, was significantly down-regulated in KSHV-infected cells based on deep sequencing and qRT-PCR. Despite this substantial down-regulation of cellular miRNAs, hsa-miR-708-5p was significantly up-regulated by KSHV and has been shown to directly inhibit pro-apoptotic protease Caspase-2. Finally, we evaluated to what extent there was an inverse correlation between miRNA and mRNA expression levels. Using filtered datasets, we identified relevant canonical pathways that were significantly enriched. Conclusion: Taken together, our data demonstrate that most human miRNAs affected by KSHV are repressed and our findings highlight the relevance of studying the post-transcriptional gene regulation of miRNAs for KSHV-associated malignancies. Overall design: Refer to individual Series. 6 samples analyzed (one cell type). Two experimental conditions: uninfected vs. chronically KSHV-infected cells (n=3). Two sequencing platforms: microRNA-Seq and mRNA-Seq.

Publication Title

Next-Generation Sequencing Analysis Reveals Differential Expression Profiles of MiRNA-mRNA Target Pairs in KSHV-Infected Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP094724
Crispr-Cas9-mediated Aire gene editing in medullary thymic epithelial (mTEC) cells shows its role as a gene expression modulator during thymocyte adhesion
  • organism-icon Mus musculus
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The aim of this study is to evaluate the effect of Autoimmune regulator (Aire) gene disruption in a murine medullary thymic epithelial cells (mTEC 3.10 cell line) on the transcriptome of these cells during its adhesion with thymocytes. The mTEC-thymocyte adhesion is a crucial step for the negative selection of autoreactive thymocytes and prevention of autoimmune diseases. To generate Aire mutant cell clones, a total of 5x10^5 mTEC 3.10 cells were electro-transfected (Lonza Nucleofector) with CRISPR-Cas9 plasmid targeting the Aire Exon 3 (plasmid "all in one" encoding Aire Exon 3 gRNA + Cas9 + GFP, from Sigma-Aldrich). The GFP positive mTEC single cells were sorted by using a FACS Aria III cytometer and cells were cloned by expansion in culture. Sanger sequencing of PCR products from the Aire Exon 3 of these clones was used in order to evaluate the occurrence of indel mutations within the targeted Exon 3. The mTEC 3.10 clone E6 was identified and validated as a compound heterozygous Aire KO (Aire +/-). This clone features the Aire allele 1 that encodes a mutant Aire protein carring a neutral aminoacid substitution (A118P) and allele 2 encoding a truncated Aire protein. Wild type (WT) mTEC 3.10 cells or mTEC 3.10 clone E6 were cultured in the presence (or not) of thymocytes in order to establish cell adhesion. The total RNA preparations from WT or clone E6 mTEC cells (before or after mTEC- thymocyte co-cultures) were then sequenced through RNA-sequencing using a Illumina HiSeq 2500 instrument and the TruSeq Stranded mRNA Library Preparation kit resulting in about 50 million paired-end stranded specific 100 bp reads per sample. Sequencing reads were mapped to Mus musculus reference genome (mm10) using STAR v.2.5.0a. Read counts over transcripts were calculated using HTSeq v.0.6.1p2 based on a current UCSC annotation file for GRCm38/mm10 (Dec. 2011). Overall design: The mRNA profiles of mTEC 3.10 cells carring WT Aire (before or after co-culture with thymocytes) or heterozygous KO mTEC 3.10 cells (clone E6, Aire +/-) (before or after co-culture with thymocytes) were generated by sequencing, in duplicates, using a Illumina HiSeq 2500 instrument.

Publication Title

Aire Disruption Influences the Medullary Thymic Epithelial Cell Transcriptome and Interaction With Thymocytes.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon GSE14889
A caspase-independent necrotic death is activated by isopeptidase inhibitor G5 in apoptosis-resistant glioblastoma cells
  • organism-icon Homo sapiens
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A 2.0 Array (hgu133a2)

Description

The regulation of necrotic death and its relevance in anti-cancer therapy are largely unknown. Here we have investigated the pro-apoptotic and pro-necrotic activities of two ubiquitin-proteasome system inhibitors (UPSIs): bortezomib and G5. The present study points out that the glioblastoma cell lines U87MG and T98G are useful models to study the susceptibility to apoptosis and necrosis in response to UPSIs. U87MG cells are resistant to apoptosis induced by bortezomib and G5 but susceptible to necrosis induced by G5. On the opposite T98G cells are susceptible to apoptosis induced by both inhibitors but show some resistance to G5-induced necrosis. By comparing the transcriptional profiles of the two cell lines, we have found that the resistance to G5-induced necrosis could arise from differences in glutathione synthesis/utilization and in the microenvironment. In particular collagen IV, which is highly expressed in T98G cells, and fibronectin, whose adhesive function is counteracted by tenascin-C in U87MG cells, can restrain the necrotic response to G5. Collectively, our results provide an initial characterization of the molecular signals governing cell death by necrosis in glioblastoma cell lines.

Publication Title

Characterization of caspase-dependent and caspase-independent deaths in glioblastoma cells treated with inhibitors of the ubiquitin-proteasome system.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE56583
Effects of vitamin D supplementation on alveolar macrophage gene expression
  • organism-icon Homo sapiens
  • sample-icon 43 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

The objective of the overall study was to determine the effects of oral vitamin D supplementation on alveolar macrophages from human subjects. In this substudy, subjects treated with vitamin D (intervention group) in paired analysis had small, but significant effects on immune-related differential gene expression pre versus post supplementation.

Publication Title

Effects of vitamin D supplementation on alveolar macrophage gene expression: preliminary results of a randomized, controlled trial.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE58133
Expression data from BM-CD138+, obtained from newly diagnosed Multiple Myeloma patients
  • organism-icon Homo sapiens
  • sample-icon 106 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

A subanalysis of the GIMEMA-MMY-3006 trial was performed to characterize treatment-emergent peripheral neuropathy (PN) in patients randomized to thalidomide-dexamethasone (TD) or bortezomib-TD (VTD) before and after double autologous transplantation (ASCT) for multiple myeloma (MM). 236 patients randomized to VTD and 238 to TD were stratified according to the emergence of grade 2 PN. Gene expression profiles (GEP) of CD138+ plasma cells were analyzed from 122 VTD-treated patients. The incidence of grade 2 PN was 35% in the VTD arm and 10% in the TD arm (p<0.001). PN resolved in 88% and 95% of patients in VTD and TD groups, respectively. Rates of complete/near complete response, progression-free and overall survival were not adversely affected by emergence of grade 2 PN. Baseline characteristics were not risk factors for PN, while GEP analysis revealed the deregulated expression of genes implicated in cytoskeleton rearrangement, neurogenesis and axonal guidance. In conclusion, in comparison with TD, incorporation of VTD into ASCT was associated with a higher incidence of PN which, however, was reversible in most of the patients and did not adversely affect their outcomes nor their ability to subsequently receive ASCT. GEP analysis suggests an interaction between myeloma genetic profiles and development of VTD-induced PN.

Publication Title

Bortezomib- and thalidomide-induced peripheral neuropathy in multiple myeloma: clinical and molecular analyses of a phase 3 study.

Sample Metadata Fields

Specimen part, Disease, Disease stage

View Samples
accession-icon SRP153060
Effects of HSP90 inhibitors on airway goblet cell metaplasia
  • organism-icon Homo sapiens
  • sample-icon 122 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Goblet cell metaplasia and mucus hypersecretion are disabling hallmarks of chronic lung diseases for which no curative treatments are available. Therapies targeting specific upstream drivers of asthma have had variable results. We hypothesized that an a priori-knowledge independent approach would point to new therapies for airway goblet cell metaplasia. We analyzed the transcriptome of an organotypic model of human goblet cell metaplasia. We combined our data with previously published datasets from IL13-exposed in vitro and asthmatic in vivo human airway epithelial cells. The drug perturbation-response connectivity approach identified the heat shock protein 90 (HSP90) inhibitor geldanamycin as a candidate for reverting airway goblet cell metaplasia. We found that geldanamycin not only prevented but reverted IL13-induced goblet cell metaplasia. Geldanamycin did not induce goblet cell death, did not solely block mucin synthesis, and did not block IL13 receptor-proximal signaling. Moreover, the transcriptional effects of geldanamycin were absent in unstimulated cells and became evident only after stimulation with IL13. The predicted mechanism of action suggested that geldanamycin should also revert IL17-induced goblet cell metaplasia, a prediction confirmed by our data. Our findings suggest HSP90 activity may be required for persistence of goblet cell metaplasia driven by various mechanisms in chronic lung diseases. Overall design: For both batches, airway epithelia cultures from the lungs of eight different humans were studied, therefore, there are eight biological replicates. Comparisons should be made within batches. In batch 1 (XAM1), epithelia were exposed to vehicle (DMSO 0.5%), geldanamycin 25 uM, or the HDAC6 inhibitor ISOX 10 uM for 48 hours. In batch 2 (XAM3), the epithelia were exposed to vehicle (DMSO 0.5%), IL13 (20 ng/mL) or IL13 plus geldanamycin (10 uM) for 48 hours.

Publication Title

HSP90 inhibitor geldanamycin reverts IL-13- and IL-17-induced airway goblet cell metaplasia.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE29072
Zebularine effect on mouse embryonic stem cells manifested as cardiod-myogenic potential: testable hypothesis generation using microarray data
  • organism-icon Mus musculus
  • sample-icon 17 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Lineage commitment during Embryonic Stem Cells (ESCs) differentiation is controlled not only by a gamut of transcription factors but also by epigenetic events, mainly histone deacetylation and promoter DNA methylation. Moreover, the DNA demethylation agent 5-Aza-2-deoxycytidine (AzadC) has been widely described in the literature as an effective chemical stimulus used to promote cardiomyogenic differentiation in various stem cell types; however, its toxicity and instability complicate its use. Thus, the purpose of this study was to examine the effects of zebularine, a stable and non-toxic DNA cytosine methylation inhibitor, on ESCs differentiation. Herein are the Affymetrix Expression data obtained from RNA of murine ESCs treated with zebularine.

Publication Title

Zebularine regulates early stages of mESC differentiation: effect on cardiac commitment.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact