refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 179 results
Sort by

Filters

Technology

Platform

accession-icon GSE48624
The effect of listening to music on human transcriptome
  • organism-icon Homo sapiens
  • sample-icon 96 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

The aim of the dataset was to study the effect of music exposure on human blood transcriptome.

Publication Title

The effect of listening to music on human transcriptome.

Sample Metadata Fields

Specimen part, Treatment, Race

View Samples
accession-icon SRP185822
Robust hematopoietic specification requires the ubiquitous Sp1 and Sp3 transcription factors [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 30 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Development requires the cooperation of tissue-specific and ubiquitously expressed transcription factors, such as Sp-family members. However, the molecular details of how ubiquitous factors participate in developmental processes are still unclear. We previously showed that during the differentiation of embryonic stem cells lacking Sp1 DNA binding activity (Sp1deltaDBD/deltaDBD cells), early blood progenitors are formed. However, gene expression during differentiation becomes progressively deregulated and terminal differentiation is severely compromised. Here we studied the cooperation of Sp1 and its closest paralogue Sp3 in hematopoietic development and demonstrate that Sp1 and Sp3 binding sites largely overlap. Sp3 cooperates with Sp1deltaDBD/deltaDBD but is unable to support hematopoiesis in the complete absence of Sp1. Using single cell gene expression analysis, we show that the lack of Sp1 DNA binding leads to a distortion of cell fate decision timing, indicating that stable chromatin bi nding of Sp1 is required to maintain robust differentiation trajectories. Overall design: RNA-Seq in ESC, Flk, HE1, HE2 and progenitor cells with WT, Sp1deltaDBD or Sp3KO

Publication Title

Robust hematopoietic specification requires the ubiquitous Sp1 and Sp3 transcription factors.

Sample Metadata Fields

Specimen part, Cell line, Subject

View Samples
accession-icon SRP185853
Robust hematopoietic specification requires the ubiquitous Sp1 and Sp3 transcription factors
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconNextSeq 500

Description

Development requires the cooperation of tissue-specifically and ubiquitously expressed transcription factors, such as Sp-family members. However, the molecular details of how ubiquitous factors participate in developmental processes are still unclear. We previously showed that during the differentiation of embryonic stem cells lacking Sp1 DNA binding activity (Sp1DDBD/DDBD cells), early blood progenitors are formed. However, gene expression during differentiation becomes progressively deregulated and terminal differentiation is blocked. Here we studied the cooperation of Sp1 and its homologue Sp3 in hematopoietic development and demonstrate that Sp1 and Sp3 binding sites largely overlap. Sp3 cooperates with Sp1DDBD/DDBD cells but is unable to support hematopoiesis in the complete absence of Sp1. Using single cell gene expression analysis, we show that the lack of Sp1 DNA binding leads to a distortion of cell fate decision timing, indicating that stable chromatin binding of Sp1 is required to maintain robust differentiation trajectories. Overall design: Chromium 10X - Single-cell RNA-seq of Sp1 wild-type and Sp1 DNA binding domain mutant cells

Publication Title

Robust hematopoietic specification requires the ubiquitous Sp1 and Sp3 transcription factors.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP103009
mTORC1 balances cellular amino acid supply with demand for protein synthesis through post-transcriptional control of ATF4
  • organism-icon Homo sapiens
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth that is commonly deregulated in human diseases. Here we find that mTORC1 controls a transcriptional program encoding amino acid transporters and metabolic enzymes through a mechanism also used to regulate protein synthesis. Bioinformatic analysis of mTORC1-responsive mRNAs identified a promoter element recognized by activating transcription factor 4 (ATF4), a key effector of the integrated stress response. ATF4 translation is normally induced by phosphorylation of eukaryotic initiation factor 2 alpha (eIF2a) through a mechanism that requires upstream open reading frames (uORFs) in the ATF4 5'' UTR. mTORC1 also controls ATF4 translation through uORFs, but independent of changes in eIF2a phosphorylation. mTORC1 instead employs the 4E-binding protein (4E-BP) family of translation repressors. These results link mTORC1-regulated demand for protein synthesis with an ATF4-regulated transcriptional program that controls the supply of amino acids to the translation machinery. Overall design: RNA-seq analysis of wild-type and ATF4-null HEK293T cells treated with Torin 1 or tunicamycin for 6 h, and ribosome profiling analysis of HEK293T cells treated with Torin 1 for 24 h.

Publication Title

mTORC1 Balances Cellular Amino Acid Supply with Demand for Protein Synthesis through Post-transcriptional Control of ATF4.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP056593
Global transcriptome analysis of macrophages during Helicobacter pylori infection
  • organism-icon Mus musculus
  • sample-icon 334 Downloadable Samples
  • Technology Badge IconIlluminaGenomeAnalyzerII

Description

Based on preliminary data demonstrating that macrophages are critical regulators of Helicobacter pylori colonization and gastric pathology in mice, we sought to investigate how macrophages may serve as bacterial reservoirs of intracellular H. pylori. Overall design: BMDM were isolated from WT and PPARg-/- mice and cultured with M-CSF for 7 days to promote macrophage differentiation. Fully differentiation macrophages were challenged with H. pylori strains SS1 at an MOI of 10 for 15 minutes. Extracellular bacteria was then eliminated by gentamycin treatment. Cells were collected at 0, 60, 120, 240, 360 and 720 minutes post gentamycin treatment to ascertain whole transcriptome differential gene expression during infection.

Publication Title

Identification of new regulatory genes through expression pattern analysis of a global RNA-seq dataset from a Helicobacter pylori co-culture system.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE22656
Expression data from CD71+ cells from the bone marrow of WT, CD70TG, IFNg-/- and CD70TG*IFNg-/- mice.
  • organism-icon Mus musculus
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

CD70TG mice are a model for sterile chronic immune activation and develop Anemia of Inflammation, which is dependent on the production of Ifng by effector CD4 and CD8 T cells.

Publication Title

Chronic IFN-γ production in mice induces anemia by reducing erythrocyte life span and inhibiting erythropoiesis through an IRF-1/PU.1 axis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE9124
Gene expression profiling of E12.5 wildtype- and Sp3 null hearts
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mice lacking the zinc finger transcription factor Specificity protein 3 (Sp3) die prenatally in the C57Bl/6 background. To elucidate the cause of mortality we analyzed the potential role of Sp3 in embryonic heart development. Sp3 null hearts display defective looping at E10.5, and at E14.5 the Sp3 null mutants have developed a range of severe cardiac malformations. In an attempt to position Sp3 in the cardiac developmental hierarchy, we analysed the expression patterns of >15 marker genes in Sp3 null hearts. Expression of Cardiac ankyrin repeat protein (Carp) was downregulated prematurely after E12.5, while expression of the other marker genes was not affected. ChIP analysis revealed that Sp3 is bound to the Carp promoter region in vivo. Microarray analysis indicates that small molecule metabolism and cell-cell interactions are the most significantly affected biological processes in E12.5 Sp3 null myocardium. Since the epicardium showed distension from the myocardium, we studied expression of Wt1, a marker for epicardial cells. Wt1 expression was diminished in epicardium-derived cells in the myocardium of Sp3 null hearts. We conclude that Sp3 is required for normal cardiac development, and suggest that it has a crucial role in myocardial differentiation. (

Publication Title

Transcription factor Sp3 knockout mice display serious cardiac malformations.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP159106
The effect of genetic background on cognitive and pathological traits: AD-BXD [dataset 2]
  • organism-icon Mus musculus
  • sample-icon 88 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Cg.5XFAD females (MMRRC Stock No #34848-JAX) were bred to males from BXD strains. The resulting F1 progeny were monitored throughout their lifepan to evaluate the effect of genetic background on cognitive and pathological traits. Samples here come from various AD-BXD lines at either 6 or 14 months of age. An earlier dataset of similar design (plus Non-transgenic littermates) was deposited as GSE101144. Ntg littermates of mice sampled here will be deposited as a separate GEO series. Overall design: 88 AD samples. For final by-strain analysis, samples were averaged into strain/age/genotype/sex groups (For example, all D2 6mo 5XFAD males were averaged for final by-strain analysis)

Publication Title

Identification of Pre-symptomatic Gene Signatures That Predict Resilience to Cognitive Decline in the Genetically Diverse AD-BXD Model.

Sample Metadata Fields

Sex, Age, Specimen part, Cell line, Subject

View Samples
accession-icon GSE79287
Correlative Controls of Seeds over Maternal Growth and Senescence in Arabidopsis (expression)
  • organism-icon Arabidopsis thaliana
  • sample-icon 14 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Correlative controls (influences of one organ over another organ) of seeds over maternal growth are one of the most obvious phenotypic expressions of the trade-off between growth and reproduction. However, the underlying molecular mechanisms are largely unknown. Here, we characterize the physiological and molecular effects of correlative inhibition by seeds on Arabidopsis thaliana inflorescences, i.e. global proliferative arrest (GPA) during which all maternal growth ceases upon the production of a given number of seeds. We use laser-assisted microdissection and RNA-seq or Affymetrix GeneChip hybridizations to compare sterile growing, fertile growing and fertile arrested meristems or whole inflorescences. In shoot tissues, we detected the induction of stress- and senescence-related gene expression upon fruit production and GPA, and a drop in chlorophyll levels - suggestive of altered source-sink relationships between vegetative shoot and reproductive tissues. Levels of shoot reactive oxygen species, however, strongly decreased upon GPA - a phenomenon that is associated with bud dormancy in some perennials. Indeed, gene expression changes in arrested apical inflorescences after fruit removal resembled changes observed in axillary buds following release from apical dominance. This suggests that GPA represents a form of bud dormancy, and that dominance is gradually transferred from growing inflorescences to maturing seeds - allowing offspring control over maternal resources, simultaneously restricting offspring number.

Publication Title

Seed Production Affects Maternal Growth and Senescence in Arabidopsis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE61302
Expression Analysis of Human Adipose-Derived Stem Cells During In Vitro Differentiation to an Adipocyte Lineage
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Adipose tissue-derived stromal stem cells (ASCs) represent a promising regenerative resource for soft tissue reconstruction. To understand the changes in cell function during the transition of ASCs into fully mature fat cells, we compared the transcriptome profiles of cultured undifferentiated human primary ASCs under conditions leading to acquisition of a mature adipocyte phenotype by microarray analysis.

Publication Title

Expression analysis of human adipose-derived stem cells during in vitro differentiation to an adipocyte lineage.

Sample Metadata Fields

Sex, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact