refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 234 results
Sort by

Filters

Technology

Platform

accession-icon GSE51056
Monozygotic twins discordant for recessive dystrophic epidermolysis bullosa phenotype highlight the role of TGF- signalling in modifying disease severity
  • organism-icon Homo sapiens
  • sample-icon 8 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Recessive dystrophic epidermolysis bullosa (RDEB) is a genodermatosis characterized by fragile skin forming blisters that heal invariably with scars. It is due to mutations in the COL7A1 gene encoding type VII collagen, the major component of anchoring fibrils connecting the cutaneous basement membrane to the dermis. Identical COL7A1 mutations often result in inter- and intra-familial disease variability, suggesting that additional modifiers contribute to RDEB course. Here, we studied a monozygotic twin pair with RDEB presenting markedly different phenotypic manifestations, while expressing similar amounts of collagen VII. Genome-wide expression analysis in twins' fibroblasts showed differential expression of genes associated with TGF- pathway inhibition. In particular, decorin, a skin matrix component with anti-fibrotic properties, was found to be more expressed in the less affected twin. Accordingly, fibroblasts from the more affected sibling manifested a profibrotic and contractile phenotype characterized by enhanced -smooth muscle actin and plasminogen activator inhibitor 1 expression, collagen I release and collagen lattice contraction. These cells also produced increased amounts of proinflammatory cytokines interleukin 6 and monocyte chemoattractant protein-1. Both TGF- canonical (Smads) and non-canonical (MAPKs) pathways were basally more activated in the fibroblasts of the more affected twin. The profibrotic behaviour of these fibroblasts was suppressed by decorin delivery to cells. Our data show that the amount of type VII collagen is not the only determinant of RDEB clinical severity, and indicate an involvement of TGF- pathways in modulating disease variability. Moreover, our findings identify decorin as a possible anti-fibrotic/inflammatory agent for RDEB therapeutic intervention.

Publication Title

Monozygotic twins discordant for recessive dystrophic epidermolysis bullosa phenotype highlight the role of TGF-β signalling in modifying disease severity.

Sample Metadata Fields

Specimen part, Disease

View Samples
accession-icon GSE97627
Comparative cardiac induction time-courses using WT, EOMES KO, and EOMES TET-ON human ES cells
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This study compares cardiac induction time-courses using (i) wild-type hESCs subjected to a standard directed differentiation protocol, (ii) EOMES knockout hESCs subjected to the same protocol, and (iii) EOMES KO / TET-ON hESCs subjected to a TET-ON protocol.

Publication Title

Cardiogenic programming of human pluripotent stem cells by dose-controlled activation of EOMES.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE52896
Human mesenchymal stromal cell expansion in a 3D scaffold-based system under direct perfusion
  • organism-icon Homo sapiens
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Development of systems allowing the maintenance of native properties of mesenchymal stromal cells (MSC) is a critical challenge for studying physiological functions of skeletal progenitors, as well as towards cellular therapy and regenerative medicine applications. Conventional stem cell culture in monolayer on plastic dishes (2D) is associated with progressive loss of functionality, likely due to the absence of a biomimetic microenvironment and the selection of adherent populations. Here we demonstrate that 2D MSC expansion can be entirely bypassed by culturing freshly isolated bone marrow cells within the pores of 3D scaffolds in a perfusion-based bioreactor system, followed by enzymatic digestion for cell retrieval. The 3D-perfusion system supported MSC growth while maintaining cells of the hematopoietic lineage, and thus generated a cellular environment mimicking some features of the bone marrow stroma. As compared to 2D-expansion, sorted CD45- cells derived from 3D-perfusion culture after the same time (3 weeks) or a similar extent of proliferation (7-8 doublings) maintained a 4.3-fold higher clonogenicity and exhibited a superior differentiation capacity towards all typical mesenchymal lineages, with similar immunomodulatory function in vitro. Transcriptomic analysis performed on MSC from 5 donors validated the robustness of the process and indicated a reduced inter-donor variability as well as a significant upregulation of multipotency-related gene clusters following 3D-perfusion as compared to 2D expansion. The described system offers a model to study how factors of a 3D engineered niche may regulate MSC function and, by streamlining conventional labor-intensive processes, is prone to automation and scalability within closed bioreactor systems.

Publication Title

Expansion of human mesenchymal stromal cells from fresh bone marrow in a 3D scaffold-based system under direct perfusion.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE97625
Analysis of immediate-early induced target genes of the BMP and WNT pathways in human ES cells
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Human ES cells respond to activation of the BMP and WNT signaling by upregulating target genes. A 4h time-point following signaling factor stimulation was chosen to reveal immediate-early induced genes which are likely to be direct targets.

Publication Title

Cardiogenic programming of human pluripotent stem cells by dose-controlled activation of EOMES.

Sample Metadata Fields

Cell line, Treatment, Time

View Samples
accession-icon GSE100592
Comparative cardiac induction time-courses using wild-type or genetically modified human embryonic stem cells
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

This study compares directed cardiac differentiation time-courses using (i) HuES6 cells with endogenous ISL1 knockout + inducible ISL1 transgene, and (ii) wild-type HuES6 cells.

Publication Title

Revised roles of ISL1 in a hES cell-based model of human heart chamber specification.

Sample Metadata Fields

Specimen part, Time

View Samples
accession-icon GSE61930
SaOS-2 transfected with CD99 in differentiation medium for 14 days
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Integrated approaches to miRNAs target definition: time-series analysis in an osteosarcoma differentiative model.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE61928
SaOS-2 transfected with CD99 in differentiation medium for 14 days [total RNA]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We explored the transcriptional modification induced by CD99 transfection in the osteosarcoma cell lines SaOS-2 after 0, 7 and 14 days in differentiation medium.

Publication Title

Integrated approaches to miRNAs target definition: time-series analysis in an osteosarcoma differentiative model.

Sample Metadata Fields

Specimen part, Cell line, Time

View Samples
accession-icon GSE28053
Role of BACH1 in HEK 293T cells
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE28050
Expression data from knockdown of BACH1 in HEK 293T cells
  • organism-icon Homo sapiens
  • sample-icon 25 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

BTB and CNC homology 1 (BACH1) is a heme-binding transcription factor repressing the transcription from a subset of MAF recognition elements (MAREs) at low intracellular heme levels. Upon heme binding, BACH1 is released from the MAREs, resulting in increased expression of antioxidant response genes. To systematically address the gene regulatory networks involving BACH1, we performed knock-down of BACH1 in HEK 293T cells using three independent types of small interfering RNAs followed by transcriptome profiling using microarrays.

Publication Title

The BTB and CNC homology 1 (BACH1) target genes are involved in the oxidative stress response and in control of the cell cycle.

Sample Metadata Fields

Cell line, Time

View Samples
accession-icon GSE22170
Genome-wide analysis of adult Pitx2c heterozygous mice
  • organism-icon Mus musculus
  • sample-icon 20 Downloadable Samples
  • Technology Badge IconIllumina MouseWG-6 v2.0 expression beadchip

Description

Analysis of the expression profile of adult mice heterozygous for Pitx2 isoform C.

Publication Title

PITX2c is expressed in the adult left atrium, and reducing Pitx2c expression promotes atrial fibrillation inducibility and complex changes in gene expression.

Sample Metadata Fields

Age, Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact