refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 26 results
Sort by

Filters

Technology

Platform

accession-icon GSE78137
Activity-dependent transcriptional profiling of basolateral amygdala neurons in response to valence-specific stimuli
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Activity-dependent transcriptional profiling was performed in the basolateral amygdala in order to identify unique genetic markers for functionally distinct neuronal populations

Publication Title

Antagonistic negative and positive neurons of the basolateral amygdala.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE37516
An analysis of global gene expression reveals molecular and signalling pathways hallmarks of neural stem cell survival and expansion in response to FGF-2 and EGF
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

The culture of neural stem cells (NSCs) as floating neurospheres has become widely used as an experimental model to analyse the properties of NSCs. Although the neurosphere model has existed for two decades, there is still no standard protocol to grow NSCs in this way. Thus, we have analysed the consequences of the frequency of growth factor (FGF-2 and EGF) addition to embryonic and adult olfactory bulb stem cells (eOBSCs and aOBSCs) cultures, specifically in terms of proliferation, cell cycle progression, death and differentiation, as well as on global changes in gene expression and signaling pathways. We found that addition of FGF-2 and EGF every two or four days rather than daily significantly reduces the volume of the neurospheres and the total number of cells, changes that were more evident in aOBSC than in eOBSC cultures. The reduction in neurosphere size was mainly due to an increase in cell death and occurs without major changes in the cell cycle parameters tested. Moreover, partial deprivation of FGF-2 and EGF produces a mild increase in aOBSC differentiation during the proliferative phase. Remarkably, these effects were accompanied by a significant upregulation in the expression of genes involved in cell death regulation (Cryab), lipid catabolic processes (Pla2g7), cell adhesion (Dscaml1), cell differentiation (Dscaml1, Gpr17, S100b) and signal transduction (Gpr17, Ndrg2), among others. These findings support that continuous supply of FGF-2 and EGF is critical to maintain the viability/survival of NSCs in culture and reveals novel molecular hallmarks of NSC maintenance/survival and expansion in response to these growth factors.

Publication Title

A global transcriptome analysis reveals molecular hallmarks of neural stem cell death, survival, and differentiation in response to partial FGF-2 and EGF deprivation.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE28238
Low grade gliomas
  • organism-icon Homo sapiens
  • sample-icon 35 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Categorisation of LGGs related to their lesion site (infratentorial vs. supratentorial)

Publication Title

Molecular fingerprinting reflects different histotypes and brain region in low grade gliomas.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE72498
Cell cycle-dependent reconfiguration of the DNA (hydroxy) methylome during terminal differentiation of human B cells into plasma cells
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000, Affymetrix Human Genome U219 Array (hgu219)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Cell-Cycle-Dependent Reconfiguration of the DNA Methylome during Terminal Differentiation of Human B Cells into Plasma Cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE72497
Cell cycle-dependent reconfiguration of the DNA (hydroxy) methylome during terminal differentiation of human B cells into plasma cells [expression array]
  • organism-icon Homo sapiens
  • sample-icon 16 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U219 Array (hgu219), Illumina HiSeq 2000

Description

Molecular mechanisms underlying terminal differentiation of B-cells into plasma cells are major determinants of adaptive immunity but remain only partially understood. Here, we present the transcriptional and epigenomic landscapes of cell subsets arising from activation of human naive B-cells and differentiation into plasmablasts. Cell proliferation of activated B cells was linked to a slight decrease in DNA methylation levels but followed by a committal step in which an S-phase-synchronized differentiation switch was associated with an extensive DNA demethylation and local acquisition of 5-hydroxymethylcytosine at enhancers and genes related to plasma cell identity.

Publication Title

Cell-Cycle-Dependent Reconfiguration of the DNA Methylome during Terminal Differentiation of Human B Cells into Plasma Cells.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE58416
Gene expression regulated by transcription factor MiT in Drosophila
  • organism-icon Drosophila melanogaster
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

To understand the role of MiT in Drosophila, we set out to identify critical gene targets by looking at changes in the WT transcriptome induced by either gain or loss of MiT function. Mutant hindgut and malpighian tubules provided loss-of function tissue and nub-Gal4-driven expression of MiT in the wing epithelium was used for gain-of-function. In the wing disc experiment, 543 genes were upregulated by exogenous MiT, and 359 genes were downregulated (>1.4 fold; P value < 0.01). In the larval HG+MT, 897 genes were downregulated and 898 were upregulated (>1.4 fold; P value < 0.01) after MiT. Among these genes, 85 were both upregulated in wing discs and downregulated in mutant HG+MT, and are the common genes that regulated by MiT in both tissues.

Publication Title

Mitf is a master regulator of the v-ATPase, forming a control module for cellular homeostasis with v-ATPase and TORC1.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE2841
Expression Profiling of pheochromocytomas of various genetic origins
  • organism-icon Homo sapiens
  • sample-icon 76 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Pheochromocytomas are neural crest-derived tumors that arise from inherited or sporadic mutations in at least six independent genes: RET, VHL, NF1, and subunits B, C and D of succinate dehydrogenase (SDH). The proteins encoded by these multiple genes regulate distinct functions. To identify molecular interactions between the distinct pathways we performed expression profiling of a large cohort of pheochromocytomas. We show here a functional link between tumors with VHL mutations and those with disruption of the genes encoding for succinate dehydrogenase (SDH) subunits B (SDHB) and D (SDHD). A transcription profile of reduced oxidoreductase is detected in all three of these tumor types, together with an angiogenesis/hypoxia profile typical of VHL dysfunction. The oxidoreductase defect, not previously detected in VHL-null tumors, is explained by suppression of the SDHB protein, a component of mitochondrial complex II. The decrease in SDHB is also noted in tumors with SDHD mutations. Gain-of-function and loss-of-function analyses show that the link between hypoxia signals (via VHL) and mitochondrial signals (via SDH) is mediated by HIF1?. These findings explain the shared features of pheochromocytomas with VHL and SDH mutations and suggest an additional mechanism for increased HIF1? activity in tumors.

Publication Title

A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE65647
LncRNA Expression Discriminates Karyotype and Predicts Survival in B-lymphoblastic Leukemia
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

LncRNA Expression Discriminates Karyotype and Predicts Survival in B-Lymphoblastic Leukemia.

Sample Metadata Fields

Specimen part, Disease, Treatment

View Samples
accession-icon GSE65646
LncRNA Expression Discriminates Karyotype and Predicts Survival in B-lymphoblastic Leukemia (Affymetrix)
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Long non-coding RNAs (lncRNAs) have been found to play a role in gene regulation with dysregulated expression in various cancers. The precise role that lncRNA expression plays in the pathogenesis of B-acute lymphoblastic leukemia (B-ALL) is unknown. Therefore, unbiased microarray profiling was performed on human B-ALL specimens and it was determined that lncRNA expression correlates with cytogenetic abnormalities, which was confirmed by RT-qPCR in a large set of B-ALL cases. Importantly, high expression of BALR-2 correlated with poor overall survival and diminished response to prednisone treatment. In line with a function for this lncRNA in regulating cell survival, BALR-2 knockdown led to reduced proliferation, increased apoptosis, and increased sensitivity to prednisolone treatment. Conversely, overexpression of BALR-2 led to increased cell growth and resistance to prednisone treatment. Interestingly, BALR-2 expression was repressed by prednisolone treatment and its knockdown led to upregulation of the glucocorticoid response pathway in both human and mouse B-cells. Together, these findings indicate that BALR-2 plays a functional role in the pathogenesis and/or clinical responsiveness of B-ALL and that altering the levels of particular lncRNAs may provide a future direction for therapeutic development.

Publication Title

LncRNA Expression Discriminates Karyotype and Predicts Survival in B-Lymphoblastic Leukemia.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE75461
Pediatric AML classification according to C/EBP expression
  • organism-icon Homo sapiens
  • sample-icon 85 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Transcriptome Array 2.0 (hta20)

Description

We examined if pediatric AMLs rank-ordered according to C/EBP expression showed the activation of similar pathways. AML samples were dichotomized into groups including the upper quartile (Q1) and the lower three quartiles (Q2-4) according to their C/EBP expression values. Moreover, AML samples were associated to French-American-British (FAB) classification.

Publication Title

CREB engages C/EBPδ to initiate leukemogenesis.

Sample Metadata Fields

Specimen part, Disease

View Samples

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact