refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 72 results
Sort by

Filters

Technology

Platform

accession-icon GSE47079
Expression data of patient-derived triple negative breast cancer xenograft tumors
  • organism-icon Homo sapiens
  • sample-icon 7 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

Triple negative breast cancer (TNBC) is an aggressive subtype that lack targeted clinical therapies. In addition, TNBC is heterogeneous and was recently further sub-classified into seven TNBC subtypes that displayed unique gene expression patterns.

Publication Title

Patient-derived xenografts of triple-negative breast cancer reproduce molecular features of patient tumors and respond to mTOR inhibition.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP045772
14-3-3? controls adipocyte progenitor cell cycle and differentiation via Gli3-dependent p27Kip expression
  • organism-icon Mus musculus
  • sample-icon 24 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

14-3-3 proteins facilitate cytoplasmic-nuclear shuttling of transcription factors.Adipocyte differentiation requires the function of critical transcription factors to drive the development of a mature adipocyte. The aim of the study was to investigate if 14-3-3? is required for the adipogenic transcriptional program. Overall design: Examination of the transcriptome in siCon- and si14-3-3?-transfected 3T3-L1 cells undergoing differentiation at t=0, 24, and 48 hours.

Publication Title

14-3-3ζ coordinates adipogenesis of visceral fat.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP056013
Analysis of differences in the transcriptome of WAT from Wildtype and 14-3-3zeta knockout mice
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Due to inherent differences in adipcoyte size between wildtype and knockout animals, we sought to examine if the decrease in adipocyte size was due to differences in the transcriptome and more specifcially, adipogenic genes. Overall design: Examination of the transcriptome in wildtype (WT) and knockout (KO) gonadal white adipose tissue from adult mice

Publication Title

14-3-3ζ coordinates adipogenesis of visceral fat.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP017484
RNA-Seq of head tissue from Drosophila melanogaster Wild Type and Adar5G1dAdar-/- mutant
  • organism-icon Drosophila melanogaster
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina Genome Analyzer II

Description

Purpose: Validation of Drosophila A-to-I editing sites Methods: We collected heads of 5 day old male dAdar-/- mutant (y, Adar5G1, w)26 and wild type (w1118) flies. Poly(A)+ RNA was used to prepare RNA-seq libraries which were subsequently sequenced single-end by an Illumina GAII Results:We builded a framework to identify RNA editing events using RNA-seq data alone in Drosophila. To validate whether the identified A-to-G sites were bona fide A-to-I editing events, we performed RNA-seq for the D.melanogaster wild-type strain (w1118) and for the Adar5G1 null mutant that eliminates RNA editing. We found that our method achieved high accuracy; 98.2% of all A-to-G sites showed only adenosine in the Adar5G1 sample Conclusions: We anticipate that our method will be very effective in the future to identify RNA editing events in different species. Overall design: mRNA profiles of heads of 5 day old male dAdar-/- mutant (y, Adar5G1, w)26 and wild type (w1118) flies

Publication Title

Identifying RNA editing sites using RNA sequencing data alone.

Sample Metadata Fields

Age, Specimen part, Cell line, Subject

View Samples
accession-icon SRP043666
RNA Sequencing Quantitative Analysis and identification of RNA editing sites of Wild Type and ADAR1 editing deficient (ADAR1E861A) murine fetal liver RNA
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: RNA editing by ADAR1 is essential for hematopoietic development. The goals of this study were firstly, to identify ADAR1-specific RNA-editing sites by indentifying A-to-I (G) mismatches in RNA-seq data compared to mm9 reference genome in wild type mice that were not edited or reduced in editing frequency in ADAR1E861A editing deficient mice. Secondly, to determine the transcriptional consequence of an absence of ADAR1-mediated A-to-I editing. Methods: Fetal liver mRNA profiles of embryonic day 12.5 wild-type (WT) and ADAR1 editing-deficient (ADAR1E861A) mice were generated by RNA sequencing, in triplicate (biological replicates), using Illumina HiSeq2000. The sequence reads that passed quality filters were analyzed at the transcript level with TopHat followed by Cufflinks. qRT–PCR validation was performed using SYBR Green assays. A-to-I (G) RNA editing sites were identified as previously described by Ramaswami G. et al., Nature Methods, 2012 using Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA). RNA editing sites were confirmed by Sanger sequencing. Results: Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 14,484 transcripts in the fetal livers of WT and ADAR1E861A mice with BWA. RNA-seq data had a goodness of fit (R2) of >0.94 between biological triplicates per genotype. Approximately 4.4% of the transcripts showed differential expression between the WT and ADAR1E861A fetal liver, with a LogFC=1.5 and p value <0.05. A profound upregulation of interferon stimulated genes were found to be massively upregulated (up to 11 logFC) in ADAR1E861A fetal liver compared to WT. 6,012 A-to-I RNA editing sites were identified when assessing mismatches in RNA-seq data of WT and ADAR1E861A fetal liver. Conclusions: Our study represents the first detailed analysis of fetal liver transcriptomes and A-to-I RNA editing sites, with biologic replicates, generated by RNA-seq technology. A-to-I RNA editing is the essential function of ADAR1 and is required to suppress interferon signaling to endogenous RNA. Overall design: Fetal liver mRNA profiles of E12.5 wild type (WT) and ADAR E861A mutant mice were generated by deep sequencing, in triplicate, using Illumina HiSeq 200.

Publication Title

RNA editing by ADAR1 prevents MDA5 sensing of endogenous dsRNA as nonself.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP112535
Profiling of untreated and residual murine BCC after Hedgehog Pathway Inhibitor
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

RNA was isolated from laser capture micro-dissected (LCM) tumour nests from fresh frozen skin of K14Cre-ER; Ptch1fl/fl; p53fl/fl mice either before (untreated) or after (treated) 28 days of twice a day vismodegib dosing at 75mg/kg body weight by oral gavage. The "SAMPLE_ID" sample characteristic is a sample identifier internal to Genentech. The ID of this project in Genentech's ExpressionPlot database is PRJ0014355 Overall design: Gene expression profiling of tumour cells from BCC mice before and after 28 days of vismodegib treatment

Publication Title

A cell identity switch allows residual BCC to survive Hedgehog pathway inhibition.

Sample Metadata Fields

Specimen part, Treatment, Subject

View Samples
accession-icon GSE71047
ADAR1-mediated A-to-I RNA editing is essential for erythropoiesis
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon GSE59664
RNA editing by ADAR1 is essential for erythropoiesis [array]
  • organism-icon Mus musculus
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Erythroid progenitors purified from EpoRCreR26eYFPADAR1fl/- and EpoRCreR26eYFPADAR1fl/+ control mice were compared for global gene array profiles

Publication Title

Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP061270
ADAR1-mediated A-to-I RNA editing is essential for erythropoiesis [RNA-seq]
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Purpose: RNA editing by ADAR1 is essential for hematopoietic development. The goals of this study were firstly, to identify ADAR1-specific RNA-editing sites by indentifying A-to-I (G) RNA editing sites in wild type mice that were not edited or reduced in editing frequency in ADAR1 deficient murine erythroid cells. Secondly, to determine the transcription consequence of an absence of ADAR1-mediated A-to-I editing. Methods: Total RNA from E14.5 fetal liver of embryos with an erythroid restricted deletion of ADAR1 (KO) and littermate controls (WT), in duplicate. cDNA libraries were prepared and RNA sequenced using Illumina HiSeq2000. The sequence reads that passed quality filters were analyzed at the transcript level with TopHat followed by Cufflinks. qRT–PCR validation was performed using SYBR Green assays. A-to-I (G) RNA editing sites were identified as previously described by Ramaswami G. et al., Nature Methods, 2012 using Burrows–Wheeler Aligner (BWA) followed by ANOVA (ANOVA). RNA editing sites were confirmed by Sanger sequencing. Results: Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 14,484 transcripts in the fetal livers of WT and ADAR1E861A mice with BWA. RNA-seq data had a goodness of fit (R2) of >0.7, p<0.0001 between biological duplicates per genotype. Clusters of hyper-editing were onserved in long, unannotated 3''UTRs of erythroid specific transcripts. A profound upregulation of interferon stimulated genes were found to be massively upregulated (up to 5 log2FC) in KO fetal liver compared to WT. 11.332 (6,894 novel) A-to-I RNA editing sites were identified when assessing mismatches in RNA-seq data. Conclusions: Our study represents the first detailed analysis of erythroid transcriptomes and A-to-I RNA editing sites, with biologic replicates, generated by RNA-seq technology. A-to-I RNA editing is the essential function of ADAR1 and is required to prevent sensing of endogenous transcripts, likely via a RIG-I like receptor mediated axis. Overall design: Fetal liver mRNA profiles of E14.5 wild type (WT) and ADAR Epor-Cre knock out mice were generated by deep sequencing, in duplicate using Illumina HiSeq 2000.

Publication Title

Adenosine-to-inosine RNA editing by ADAR1 is essential for normal murine erythropoiesis.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP079698
Profiling of AKVPL vs AKVPSL derived tumor cells (Mouse)
  • organism-icon Mus musculus
  • sample-icon 16 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

RNA was isolated from fluorescence activated cell sorted (FACS) Lgr5-GFP+ and Lgr5-GFP- from aged matched subcutaneously implanted Apcmin/+;KrasLSL-G12D/+;VillinCre; Lgr5DTReGFP;p53KO (AKVPL) and Apcmin/+;KrasLSL-G12D/+;VillinCre; Lgr5DTReGFP;p53KO;SMAD4KO (AKVPSL) intestinal tumours. "SAMPLE_ID" sample characteristic is a sample identifier internal to Genentech. The ID of this project in Genentech''s ExpressionPlot database is PRJ0009421 Overall design: Gene expression profiling of Lgr5+ and Lgr5- tumour cells from AKVPL and AKVPSL murine derived intestinal tumours

Publication Title

A distinct role for Lgr5<sup>+</sup> stem cells in primary and metastatic colon cancer.

Sample Metadata Fields

Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact