refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 675 results
Sort by

Filters

Technology

Platform

accession-icon SRP090558
Interferon regulated genes in mouse intestine after irradiation and prophylactic Rig-I activation
  • organism-icon Mus musculus
  • sample-icon 45 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

As RIG-I activation induces potent IFN-I responses,we analyzed the role of IFN-I in intestinal tissue protection and prevention of GVHD. We performed RNA sequencing with tissue samples from SI of WT mice that received TBI -/+ previous 3pRNA treatment and -/+ antibody-mediated blockade of IFNAR. Application of 3pRNA before TBI resulted in a significant increase of IFN-inducible genes in the SI as compared to solely irradiated mice. Blockade of IFNAR signaling abrogated 3pRNA-mediated up-regulation of IFN-induced genes, demonstrating that RIG-I-induced gene-regulation depends on IFN-I. Overall design: Balb/c mice were solely irradiated (9Gy) (n=3), pretreated with Rig-I agonist 3pRNA prior (d-1) to irradiation (n=3) or pre-treated with 3pRNA (d-1) + anti-IFNaR1 blocking antibody (d-2) prior to irradiation (n=3). RNA from small intestines was isolated 12h after irradiation and used for RNA sequencing.

Publication Title

RIG-I/MAVS and STING signaling promote gut integrity during irradiation- and immune-mediated tissue injury.

Sample Metadata Fields

Cell line, Subject

View Samples
accession-icon GSE95307
Dual inhibition of G9a and DNMT1 Enhances Cell Reprogramming Promoting Induction of Mesenchymal-to-Epithelial Transition and Facilitating Transcription Factor Engagement in the Genome.
  • organism-icon Homo sapiens
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

The combination of defined factors with small molecules targeting epigenetic factors is a strategy that has been shown to enhance optimal derivation of human iPSCs and could be used for therapeutic and regenerative medicine applications. In this study, we showed that a new first-in-class dual G9a/DNMT inhibitor CM272 compound improves the standard four-factor reprogramming efficiency of human fibroblast. The use of CM272 facilitates the generation of iPSC with only two factors, OCT4 and SOX2, allowing the removal of potentially oncogenic factors such as cMYC or KLF4. Taking a closer look at the early events occurring during cell reprogramming we demonstrated that treatment with our G9a/DNMT dual inhibitor induces heterochromatin relaxation, facilitates the engagement of OCT4 and SOX2 transcription factors to the genome and promotes mesenchymal to epithelial transition during cell reprogramming. Thus, the use of this new G9a/DNMT dual inhibitor compound may represent an interesting alternative for improving cell reprogramming.

Publication Title

Reversible dual inhibitor against G9a and DNMT1 improves human iPSC derivation enhancing MET and facilitating transcription factor engagement to the genome.

Sample Metadata Fields

Sex, Specimen part, Disease, Cell line

View Samples
accession-icon GSE51950
Effects of BRD4 inhibition in AML
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

The BET (bromodomain and extra terminal) protein family members including BRD4 bind to acetylated lysines on histones and regulate the expression of important oncogenes, e.g., MYC and BCL2. Here we demonstrate the sensitizing effects of the histone hyperacetylation inducing pan-histone deacetylase inhibitor (HDI) panobinostat (PS) on human AML blast progenitor cells (BPCs) to the BET protein inhibitor JQ1. Treatment with JQ1 but not its inactive enantiomer (R-JQ1) was highly lethal against AML BPCs expressing mutant NPM1c+ with or without co-expression of FLT3-ITD, or AML expressing MLL fusion oncoprotein. JQ1 treatment reduced binding of BRD4 and RNA polymerase II to the DNA of MYC and BCL2, and reduced their levels in the AML cells. Co-treatment with JQ1 and the HDAC inhibitor panobinostat (PS) synergistically induced apoptosis of the AML BPCs, but not of normal CD34+ hematopoietic progenitor cells. This was associated with greater attenuation of MYC and BCL2, while increasing p21, BIM and cleaved PARP levels in the AML BPCs. Co-treatment with JQ1 and PS significantly improved the survival of the NOD/SCID mice engrafted with OCI-AML3 or MOLM13 cells (p < 0.01). These findings highlight co-treatment with a BRD4 antagonist and an HDI as a potentially efficacious therapy of AML.

Publication Title

Highly active combination of BRD4 antagonist and histone deacetylase inhibitor against human acute myelogenous leukemia cells.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP041255
RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer
  • organism-icon Homo sapiens
  • sample-icon 22 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

The translational control of oncoprotein expression is implicated in many cancers. Here we report an eIF4A/DDX2 RNA helicase-dependent mechanism of translational control that contributes to oncogenesis and underlies the anticancer effects of Silvestrol and related compounds. For example, eIF4A promotes T-ALL development in vivo and is required for leukaemia maintenance. Accordingly, inhibition of eIF4A with Silvestrol has powerful therapeutic effects in vitro and in vivo. We use transcriptome-scale ribosome footprinting to identify the hallmarks of eIF4A-dependent transcripts. These include 5'UTR sequences such as the 12-mer guanine quartet (CGG)4 motif that can form RNA G-quadruplex structures. Notably, among the most eIF4A-dependent and Silvestrol-sensitive transcripts are a number of oncogenes, super-enhancer associated transcription factors, and epigenetic regulators. Hence, the 5'UTRs of selected cancer genes harbour a targetable requirement for the eIF4A RNA helicase. Overall design: Comparison of ribosome-protected RNA for drug treated and DMSO treated KOPT-K1 cell, two replicates of ribosome-protected RNA sequencing and three replicates of RNA-seq.

Publication Title

RNA G-quadruplexes cause eIF4A-dependent oncogene translation in cancer.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE71922
Loss of the proteostasis modulator AIRAPL causes myeloid transformation by deregulating IGF-1 signaling
  • organism-icon Homo sapiens
  • sample-icon 2 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 2.0 ST Array (hugene20st)

Description

Transcriptional profiling of human acute myeloid leukemia cells lines HEL and SET2 transduced with an IGF1R shRNA and miR-125a sponge.

Publication Title

Loss of the proteostasis factor AIRAPL causes myeloid transformation by deregulating IGF-1 signaling.

Sample Metadata Fields

Specimen part, Cell line, Treatment

View Samples
accession-icon GSE87806
Gene expression profiles of human Mesenchymal Stromal Cells (MSC) from JAK2+ myeloproliferative neoplasms (MPN)
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

In this study we analyzed the behavior of bone marrow MSC (BM-MSC) from MPN patients with the mutation in JAK2V617F. We initially characterized the biological function and gene expression profile changes in BM-MSC from MPN patients when compared to BM-MSC of healthy donors (HD). Then, we established co-cultures between MSC cell lines (HTERT and HS5) and the UKE-1 MPN cell line, and performed RT-PCR to study if the leukemic cells were able to modify the genes related to hematopoietic support.

Publication Title

Mesenchymal stromal cells (MSC) from JAK2+ myeloproliferative neoplasms differ from normal MSC and contribute to the maintenance of neoplastic hematopoiesis.

Sample Metadata Fields

Specimen part, Disease stage, Subject

View Samples
accession-icon GSE48805
Comparison of gene expression profile in RAG2+ B lineage cells from the small intestinal lamina propria and RAG2+ B lineage cells from the bone marrow
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We used a RAG2-GFP reporter mouse to show that RAG+ B lineage cells can be found in the small intestinal lamina proria in normally-housed mice at weaning age. We used microarry expression analysis to compare the RAG2+ population in the gut to the RAG2+ B lineage population in the bone marrow.

Publication Title

Microbial colonization influences early B-lineage development in the gut lamina propria.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE29789
Genome wide transcriptional analysis of P. aeruginosa PAO1 response to pH at 25 mM phosphate background
  • organism-icon Pseudomonas aeruginosa pao1
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

During extreme physiological stress, the intestinal tract can be transformed into a harsh environment characterized by regio- spatial alterations in oxygen, pH, and phosphate concentration. When the human intestine is exposed to extreme medical interventions, the normal flora becomes replaced by pathogenic species whose virulence can be triggered by various physico-chemical cues leading to lethal sepsis. We previously demonstrated that phosphate depletion develops in the mouse intestine following surgical injury and triggers intestinal P. aeruginosa to express a lethal phenotype that can be prevented by oral phosphate ([Pi]) supplementation.

Publication Title

Prevention of siderophore- mediated gut-derived sepsis due to P. aeruginosa can be achieved without iron provision by maintaining local phosphate abundance: role of pH.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE30967
Genome wide transcriptional analysis of P. aeruginosa PAO1, response to phosphate limitation
  • organism-icon Pseudomonas aeruginosa pao1
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Pseudomonas aeruginosa Array (paeg1a)

Description

P. aeruginosa PAO1 grown as lawns on Nematode Growth Medium prepared without supplementation (NGM Pi<0.1 mM) has high killing ability against C. elegans, however, no mortality in worms has been observed during 48 hrs when feeding on PAO1 lawns grown on phosphate supplemented full NGM Pi 25 mM, pH 6.0 medium.

Publication Title

Red death in Caenorhabditis elegans caused by Pseudomonas aeruginosa PAO1.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP043115
Upf2 in NMD pathway
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge IconIon Torrent Proton

Description

Purpose: Probe the transcriptome-wide changes in the expression pattern between WT and Sertoli-specific Upf2 KO testes Methods: Total RNA were extracted from WT and Sertoli-specific Upf2 KO testes in triplicates and subject to deep-sequencing in Ion Torrent seq platform. Results: Using an optimized data analysis workflow, we mapped about 30 million sequence reads per sample to the mouse genome (build mm9) and identified 16,014 transcripts in the retinas of WT and Nrl-/- mice with BWA workflow and 34,115 transcripts with TopHat workflow. RNA-seq data confirmed stable expression of 25 known housekeeping genes, and 12 of these were validated with qRT–PCR. RNA-seq data had a linear relationship with qRT–PCR for more than four orders of magnitude and a goodness of fit (R2) of 0.8798. Approximately 10% of the transcripts showed differential expression between the WT and Nrl-/- retina, with a fold change =1.5 and p value <0.05. Altered expression of 25 genes was confirmed with qRT–PCR, demonstrating the high degree of sensitivity of the RNA-seq method. Hierarchical clustering of differentially expressed genes uncovered several as yet uncharacterized genes that may contribute to retinal function. Data analysis with BWA and TopHat workflows revealed a significant overlap yet provided complementary insights in transcriptome profiling. Conclusions: Our study represents the first detailed analysis of Upf2-mediated NMD pathway in Sertoli cell development Overall design: Testis mRNA profiling was generated from postnatal day 4 WT and Amh-cKO (Sertoli specific Upf2 KO) testes, in triplicates.

Publication Title

UPF2, a nonsense-mediated mRNA decay factor, is required for prepubertal Sertoli cell development and male fertility by ensuring fidelity of the transcriptome.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact