refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 147 results
Sort by

Filters

Technology

Platform

accession-icon SRP056819
Molecular anatomy of palate development
  • organism-icon Mus musculus
  • sample-icon 25 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Background: The FACEBASE consortium was established in part to create a central resource for craniofacial researchers. One purpose is to provide a molecular anatomy of craniofacial development. To this end we have used a combination of laser capture microdissection and RNA-Seq to define the gene expression programs driving development of the murine palate. Results: We focused on the E14.5 palate, soon after medial fusion of the two palatal shelves. The palate was divided into multiple compartments, including medial and lateral, as well as oral and nasal, for both the anterior and posterior domains. A total of 25 RNA-Seq datasets were generated. The results provide a comprehensive view of the region specific expression of all transcription factors, growth factors and receptors. Paracrine interactions can be inferred from flanking compartment growth factor/receptor expression patterns. The results are validated primarily through very high concordance with extensive previously published gene expression data for the developing palate. In addition selected immunostain validations were carried out. Conclusions: This report provides an RNA-Seq based atlas of gene expression patterns driving palate development at microanatomic resolution. This FACEBASE resource is designed to fuel discovery by the craniofacial research community. Overall design: Laser capture microdissection and RNA-seq were used to generate gene expression profiles of different compartments of the mouse E14.5 developing palate

Publication Title

Molecular Anatomy of Palate Development.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP098646
The use of cold active proteases can dramatically reduce single cell RNA-seq gene expression artifacts
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

Single cell RNA-seq is a powerful methodology, but with important limitations. In particular, the process of enzymatic separation of cells at 37O C can be expected to result in artifact changes in gene expression patterns. We here describe a dissociation method that uses protease from a psychrophilic microorganism with high activity in the cold. The entire procedure is carried out at 6O C or colder, where mammalian transcriptional machinery is largely inactive. To test this method we carry out single cell RNA-seq on about 9,000 cells, comparing the results of the cold method with a method using 37O C incubations for multiple times. We show that the cold active protease method results in a great reduction in gene expression artifacts. Overall design: Whole mouse post natal day 1 kidney cells were dissassociated by either a cold active protease or an enzyme cocktail for varying lengths of time. The gene expression profiles of the four groups of cells were determined by drop-seq / RNA-seq.

Publication Title

Psychrophilic proteases dramatically reduce single-cell RNA-seq artifacts: a molecular atlas of kidney development.

Sample Metadata Fields

Subject

View Samples
accession-icon SRP171634
Gene Expression Changes in Major Cell Types of the Glomerulus in a Mouse Model of Focal Segmental Glomerulosclerosis
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

We characterize the gene expression changes which occur in the mouse glomerular podocyte, mesangial, and endothelial cells between control mice and mutant mice which are missing two copies of Fyn-proto oncogene (Fyn) and one copy of CD2-associated protein (CD2AP) in a mouse model of FSGS. Overall design: The glomeruli are purified by digestion with Collagenase A and sieving, a single cell suspension is generated via enzymatic dissociation; the single cell suspension is then FACS sorted based on GFP-fluorescence (targeting the glomerular endothelial, mesangial, and podocyte cells). Total RNA was purified using a column-based system. RNA was then quantitatively and qualitatively analyzed using an agilent bioanalynzer, cDNA libraries were generated using Nugen Ovation RNA-Seq V2, and the resulting libraries were ran on an Illumina HiSeq 2500. Data was analyzed using Strand NGS version 2.6.

Publication Title

A bigenic mouse model of FSGS reveals perturbed pathways in podocytes, mesangial cells and endothelial cells.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE55967
A superseries of gene expression in early craniofacial development in mouse embryos at stages E8.5, E9,5, and E10.5.
  • organism-icon Mus musculus
  • sample-icon 114 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A gene expression atlas of early craniofacial development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55965
A gene expression atlas of early craniofacial development
  • organism-icon Mus musculus
  • sample-icon 103 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

We present a gene expression atlas of early mouse craniofacial development. Laser capture microdissection (LCM) was used to isolate cells from the principal critical micro-regions, whose development, differentiation and signaling interactions are responsible for the construction of the mammalian face.

Publication Title

A gene expression atlas of early craniofacial development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE55964
Single cell gene expression of early E8.5 pioneer neural crest cells and paraxial mesoderm
  • organism-icon Mus musculus
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

Laser capture microdissection (LCM) was used to isolate cells from the principal critical micro-regions, whose development, differentiation and signaling interactions are responsible for the construction of the mammalian face. At E8.5, as migrating neural crest cells begin to exit the neural fold/epidermal ectoderm boundary, we examined the facial mesenchyme, composed of neural crest and paraxial mesoderm cells, as well as cells from adjacent neuroepithelium.

Publication Title

A gene expression atlas of early craniofacial development.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE154028
High fat diet inhibits EV-Mediated angiogenisis
  • organism-icon Sus scrofa
  • sample-icon 11 Downloadable Samples
  • Technology Badge Icon Porcine Gene 1.0 ST Array (porgene10st)

Description

Mesenchymal stem cell-derived extracellular vesicles (EVs) have been shown to promote angiogenesis in the ischemic myocardium. This study examines the difference in vascular density, myocardial perfusion, molecular signaling, and gene expression between normal diet (ND) and high fat diet (HFD) groups at baseline and following intra-myocardial injection of EVs

Publication Title

Effects of High Fat Versus Normal Diet on Extracellular Vesicle-Induced Angiogenesis in a Swine Model of Chronic Myocardial Ischemia.

Sample Metadata Fields

Sex, Specimen part, Treatment

View Samples
accession-icon GSE21324
Gene expression profiles of the diabetic glomerular endothelial cell
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The objective of this study is to create an encyclopedia of all genes expressed in the glomerular endothelial cell under normal and diabetic conditions. We utilized Tie2-GFP transgenic mice to mark cells of the glomerular endothelium. To induce diabetic nephropathy (DB), a genetic model of DB, BKS.Cg-m +/+ Leprdb/J from Jax laboratories was used. We utilized fluorescent activated cell sorting (FACS) to isolate glomerular endothelial cells from normal and diabetic mice. The RNAs from these samples were isolated and utilized to hybridize to microarrays, which offers a powerful, efficient and effective method for the creation of a gene expression atlas.

Publication Title

Gene expression programs of mouse endothelial cells in kidney development and disease.

Sample Metadata Fields

Age, Specimen part

View Samples
accession-icon GSE20004
Gene expression profiles of adult renal medullary endothelial cells isolated from TIE2-GFP transgenic mice using FACS. (GUDMAP Series ID: 35)
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The combination of fluorescent activated cell sorting (FACS) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in FACS isolated components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone.

Publication Title

Gene expression programs of mouse endothelial cells in kidney development and disease.

Sample Metadata Fields

Sex

View Samples
accession-icon GSE20991
Gene expression profiles of E15.5 endothelial cells isolated from TIE2-GFP transgenic mice using FACS. (GUDMAP Series ID:38)
  • organism-icon Mus musculus
  • sample-icon 3 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

The long term objective is to create an encyclopedia of the expression levels of all genes in multiple components of the developing kidney. The central thesis is straightforward. The combination of fluorescent activated cell sorting (FACS) plus microarray analysis offers a powerful, efficient and effective method for the creation of a global gene expression atlas of the developing kidney. Microarrays with essentially complete genome coverage can be used to quantitate expression levels of every gene in FACS isolated components of the developing kidney. The ensuing rapid read-out provides an expression atlas that is more sensitive, more economical and more complete than would be possible by in situ hybridizations alone.

Publication Title

Gene expression programs of mouse endothelial cells in kidney development and disease.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact