refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 142 results
Sort by

Filters

Technology

Platform

accession-icon GSE38093
Diet-Induced Obesity Exacerbates Inflammatory and Oxidative Stress Responses in Mice Exposed to Cigarette Smoke
  • organism-icon Mus musculus
  • sample-icon 48 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

To identify biosignatures that describe these lifestyle susceptibility factors, we performed parallel exposures of regular weight (RW) C57BL/6 and diet-induced obese (DIO) C57BL/6 mice to cigarette smoke, either mainstream (MS) or sidestream (SS), mimicking both the smoker and environmental exposure through second-hand smoke, respectively.

Publication Title

Impaired transcriptional response of the murine heart to cigarette smoke in the setting of high fat diet and obesity.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE47022
Impaired Transcriptional Response of the Murine Heart To Cigarette Smoke in the Setting of High Fat Diet and Obesity
  • organism-icon Mus musculus
  • sample-icon 45 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

To identify biosignatures that describe these lifestyle susceptibility factors, we performed parallel exposures of regular weight (RW) C57BL/6 and diet-induced obese (DIO) C57BL/6 mice to cigarette smoke, either mainstream (MS) or sidestream (SS), mimicking both the smoker and environmental exposure through second-hand smoke, respectively.

Publication Title

Impaired transcriptional response of the murine heart to cigarette smoke in the setting of high fat diet and obesity.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE38092
Diet-Induced Obesity Reprograms the Inflammatory Response of the Murine Lung to Inhaled Endotoxin
  • organism-icon Mus musculus
  • sample-icon 32 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

To identify key biological pathways that define susceptibility factors for pulmonary infection during obesity, diet-induced obese (DIO) and regular weight (RW) C57BL/6 mice were exposed to 0.5 g/L inhaled lipopolysaccharide (LPS) for 1 hr/d for 4 days over a period of 2 weeks.

Publication Title

Diet-induced obesity reprograms the inflammatory response of the murine lung to inhaled endotoxin.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE44294
Dysregulation of Macrophage Activation Profiles by Engineered Nanoparticles
  • organism-icon Mus musculus
  • sample-icon 18 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

To investigate how the phenotype of macrophages that have engulfed engineered nanoparticles (ENPs) differs from normal macrophages, we conducted Affymetrix microarray studies to identify the gene regulatory pathways affected by the ENPs. To mimic potential occupational exposure scenarios, the experimental design involved pretreatment of mouse primary bone marrow macrophages with the ENPs (25 mg/ml) for 24 hr, followed by removal of residual ENPs and challenging the macrophages with the TLR4 ligand and surrogate bacterial stimulus, lipopolysachharide (LPS) for 4 hr. The 4 hr challenge time was chosen based on preliminary studies which showed many of the proinflammatory gene expression responses peak between 2-6 hr after LPS treatment.

Publication Title

Dysregulation of macrophage activation profiles by engineered nanoparticles.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE13005
Macrophage response to silica nanoparticles
  • organism-icon Mus musculus
  • sample-icon 21 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430A 2.0 Array (mouse430a2)

Description

Using a macrophage cell line, we demonstrate the ability of amorphous silica particles to stimulate inflammatory protein secretion and induce cytotoxicity. Whole genome microarray analysis of early gene expression changes induced by 10nm and 500nm particles showed that the magnitude of change for the majority of genes correlated more tightly with particle surface area than either particle mass or number. Gene expression changes that were size-specific were also identified, however the overall biological processes represented by all gene expression changes were nearly identical, irrespective of particle diameter. Our results suggest that on an equivalent nominal surface area basis, common biological modes of action are expected for nano- and supranano-sized silica particles.

Publication Title

Macrophage responses to silica nanoparticles are highly conserved across particle sizes.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33201
A mouse model of the most aggressive subgroup of human medulloblastoma
  • organism-icon Mus musculus
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

A mouse model of the most aggressive subgroup of human medulloblastoma.

Sample Metadata Fields

Specimen part

View Samples
accession-icon GSE33199
A mouse model of the most aggressive subgroup of human medulloblastoma [Mouse430_2]
  • organism-icon Mus musculus
  • sample-icon 64 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Mouse models of medulloblastoma are compared to human subgroups through microarray expression and other measures

Publication Title

A mouse model of the most aggressive subgroup of human medulloblastoma.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE76019
Gene expression profiling of pediatric adrenocortical tumors of patients treated on the Children's Oncology Group XXX protocol.
  • organism-icon Homo sapiens
  • sample-icon 34 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

We have previously observed that expression of HLA genes associate with histology of adrenocortical tumors (PMID 17234769).

Publication Title

Prognostic Significance of Major Histocompatibility Complex Class II Expression in Pediatric Adrenocortical Tumors: A St. Jude and Children's Oncology Group Study.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE76021
Gene expression profiling of pediatric adrenocortical tumors collected by the International Pediatric Adrenocortical Tumor Registry (IPACTR).
  • organism-icon Homo sapiens
  • sample-icon 28 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

We have previously observed that expression of HLA genes associate with histology of adrenocortical tumors (PMID 17234769).

Publication Title

Prognostic Significance of Major Histocompatibility Complex Class II Expression in Pediatric Adrenocortical Tumors: A St. Jude and Children's Oncology Group Study.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE14286
Expression data for biophenotypic leukemia patients treated in St. Jude Children's Research Hospital
  • organism-icon Homo sapiens
  • sample-icon 13 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133A Array (hgu133a)

Description

Mixed-lineage leukemias represent about 3-5% of acute leukemias occurring in patients of all ages and comprise several different subtypes (biphenotypic, bilineal, and lineage switch). The optimal therapeutic approach to these cases, especially in pediatric patients, has not been defined. We used microarrays to detail the gene expression of pediatric patients with biophenotypic leukemia.

Publication Title

Acute mixed lineage leukemia in children: the experience of St Jude Children's Research Hospital.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact