refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 204 results
Sort by

Filters

Technology

Platform

accession-icon SRP101737
Genome Scale Analysis of miRNA and mRNA regulation during preterm labor [whole blood]
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The goal of this study was to define relationships between peripheral blood miRNAs and mRNAs of women undergoing idiopathic preterm labor (PTL) and compare network level changes to control women that deliver at term.Using RNA Sequencing we have performed global miRNA and mRNA profiling in both monocytes and whole blood leukocytes of women who underwent PTL (N=15) matched to non-pathological controls (N=30) as a part of the Ontario Birth Study cohort. We have identified differentially expressed miRNAs, mRNAs and pathways associated with PTL. Intriguingly, we found perturbations in many cellular signaling pathways, particularly in interleukin signaling. We also predicted mRNA targets for specific miRNAs and used these predictions to build putative miRNA-mRNA networks. We identified 6 miRNAs significantly associated with PTL whose expression is negatively correlated with expression of 14 predicted mRNA targets that are also significantly associated with PTL. Overall design: miRNA and mRNA were quantified from whole blood and monocytes of women undergoing spontaneous preterm labor compared to nonlabor controls matched on gestational age

Publication Title

Comparative analysis of gene expression in maternal peripheral blood and monocytes during spontaneous preterm labor.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE95042
KDM4 inhibition targets breast cancer stem cells
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V4.0 expression beadchip

Description

Cancer progression is associated with alterations of epigenetic regulators such as histone-lysine demethylases 4 (KDM4)2-5. During breast cancer therapy, classical treatments fail to address resistant cancer stem cell populations6-10. Here, we identified a novel KDM4 inhibitor (KDM4(i)) with unique preclinical characteristics. KDM4(i) is a highly potent pan KDM4 inhibitor that specifically blocks the demethylase activity of KDM4A, B, C, and D but not that of the other members of the KDM family. We validated the KDM4(i) anti-tumoral properties under conditions recapitulating patient tumors. Therefore, we established a method to isolate and grow triple-negative breast cancer stem cells (BCSCs) from individual patient tumors after neoadjuvant chemotherapy. Limiting dilution orthotopic xenografts of these BCSCs faithfully regenerate original patient tumor histology and gene expression. KDM4(i) blocks proliferation, sphere formation and xenograft tumor growth of BCSCs. Importantly, KDM4(i) abrogates expression of EGFR, a driver of therapy-resistant triple-negative breast tumor cells11, via inhibition of the KDM4A demethylase activity. Taken together, we present a unique BCSC culture system as a basis for therapeutic compound identification and demonstrate that KDM4 inhibition is a new therapeutic strategy for the treatment of triple-negative breast cancer.

Publication Title

KDM4 Inhibition Targets Breast Cancer Stem-like Cells.

Sample Metadata Fields

Sex, Specimen part, Subject

View Samples
accession-icon SRP154908
KMT9a writes the H4K12me1 histone mark and controls metabolism and proliferation of castration-resistant prostate cancer cells [RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 12 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

The aim of the RNA-seq was to identify the KMT9 transcriptome in PC-3M cells. The MCF10A breast epithelial cells that do not express KMT9a were used to show that the siRNA against KMT9 show no off-target effects. Overall design: 12 samples correponding to 4 times 3 replicates were used for the study

Publication Title

KMT9 monomethylates histone H4 lysine 12 and controls proliferation of prostate cancer cells.

Sample Metadata Fields

Specimen part, Cell line, Treatment, Subject

View Samples
accession-icon GSE27620
CHD5, A Brain-Specific Chromatin Remodeling Enzyme, Regulates Expression Of Neuronal Genes.
  • organism-icon Rattus norvegicus
  • sample-icon 18 Downloadable Samples
  • Technology Badge IconIllumina ratRef-12 v1.0 expression beadchip

Description

CHD5 is frequently deleted in neuroblastoma, and appears to be a tumor suppressor gene; however, little is known about the role of CHD5. We found CHD5 mRNA was restricted to brain; by contrast most other remodeling ATPases were broadly expressed. CHD5 protein isolated from mouse brain was associated with HDAC2, p66, MTA3 and RbAp46 in a megadalton complex. CHD5 protein was detected in several rat brain regions and appeared to be enriched in neurons. CHD5 protein was predominantly nuclear in primary rat neurons and brain sections. Microarray analysis revealed genes that were upregulated and downregulated when CHD5 was depleted from primary neurons. CHD5 depletion altered expression of neuronal genes, transcription factors, and brain-specific subunits of the SWI/SNF remodeling enzyme. Aging and Alzheimers gene sets were strongly affected by CHD5 depletion from primary neurons. Chromatin immunoprecipitation revealed CHD5 bound to these genes, suggesting the regulation was direct. Together, these results indicate that CHD5 is found in a NuRD-like multi-protein complex. CHD5 is restricted to the brain, unlike the closely related family members CHD3 and CHD4. CHD5 regulates expression of neuronal genes, cell cycle genes and remodeling genes. CHD5 is linked to regulation of aging and Alzheimers genes.

Publication Title

CHD5, a brain-specific paralog of Mi2 chromatin remodeling enzymes, regulates expression of neuronal genes.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP134127
Invasive non-typhoidal Salmonella dysregulates the repertoire of dendritic cell responses to intracellular and extracellular stimuli [scRNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 384 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Non-typhoidal Salmonella (NTS) are among of the most important food-borne pathogens. Recently, a highly invasive multi-drug resistant S. Typhimurium of a distinct multilocus sequence type (MLST), ST313, has emerged across sub-Saharan Africa as a major cause of lethal bacteraemia in children and immunosuppressed adults. Encounters between dendritic cells (DCs) and invading bacteria determine the course of infection but whether or how ST313 might usurp DC mediated defence has not been reported. Here we utilised fluorescently labelled invasive and non-invasive strains of Salmonella combined with single-cell RNA sequencing to study the transcriptomes of individual infected and bystander DCs. The transcriptomes displayed a repertoire of cell instrinsic and extrinsic innate response states that differed between invasive and non-invasive strains. Gene expression heterogeneity was increased in DCs challenged with invasive Salmonella. DCs exposed but not harbouring invasive Salmonella exhibited a hyper-activated profile that likely facilitates trafficking of infected cells and dissemination of internalised intact bacteria. In contrast, invasive Salmonella containing DCs demonstrate reprogramming of trafficking genes required to avoid autophagic destruction. Furthermore, these cells displayed differential expression of tolerogenic IL10 and MARCH1 enabling CD83 mediated adaptive immune evasion. Altogether our data illustrate pathogen cell-to cell variability directed by a Salmonella invasive strain highlighting potential mechanisms of host adaption with implications for dissemination in vivo. Overall design: Single-cell RNA sequencing (SMARTSeq2) of 373 human monocyte derived dendritic cells infected with S. Typhimurium strain LT2 or D23580 or left uninfected

Publication Title

Invasive Salmonella exploits divergent immune evasion strategies in infected and bystander dendritic cell subsets.

Sample Metadata Fields

Subject, Time

View Samples
accession-icon SRP134128
Invasive non-typhoidal Salmonella dysregulates the repertoire of dendritic cell responses to intracellular and extracellular stimuli [bulk RNA-seq]
  • organism-icon Homo sapiens
  • sample-icon 45 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Non-typhoidal Salmonella (NTS) are among of the most important food-borne pathogens. Recently, a highly invasive multi-drug resistant S. Typhimurium of a distinct multilocus sequence type (MLST), ST313, has emerged across sub-Saharan Africa as a major cause of lethal bacteraemia in children and immunosuppressed adults. Encounters between dendritic cells (DCs) and invading bacteria determine the course of infection but whether or how ST313 might usurp DC mediated defence has not been reported. Here we utilised fluorescently labelled invasive and non-invasive strains of Salmonella combined with single-cell RNA sequencing to study the transcriptomes of individual infected and bystander DCs. The transcriptomes displayed a repertoire of cell instrinsic and extrinsic innate response states that differed between invasive and non-invasive strains. Gene expression heterogeneity was increased in DCs challenged with invasive Salmonella. DCs exposed but not harbouring invasive Salmonella exhibited a hyper-activated profile that likely facilitates trafficking of infected cells and dissemination of internalised intact bacteria. In contrast, invasive Salmonella containing DCs demonstrate reprogramming of trafficking genes required to avoid autophagic destruction. Furthermore, these cells displayed differential expression of tolerogenic IL10 and MARCH1 enabling CD83 mediated adaptive immune evasion. Altogether our data illustrate pathogen cell-to cell variability directed by a Salmonella invasive strain highlighting potential mechanisms of host adaption with implications for dissemination in vivo. Overall design: RNA-seq of mini-bulks (5000 cells) of human monocyte derived dendritic cells infected with S. Typhimurium strain LT2 or D23580 or left uninfected

Publication Title

Invasive Salmonella exploits divergent immune evasion strategies in infected and bystander dendritic cell subsets.

Sample Metadata Fields

Subject, Time

View Samples
accession-icon GSE55497
FoxP1 marks medium spiny neurons from precursors to maturity and is required for their differentiation
  • organism-icon Mus musculus
  • sample-icon 9 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Expression 430A Array (moe430a)

Description

To understand the developing striatum, key genes during development were identified using microarray analsyis tha could be considered as marker of medium spiny neurons. The ages studied is at peak striatal neurogenesis.

Publication Title

FoxP1 marks medium spiny neurons from precursors to maturity and is required for their differentiation.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE87806
Gene expression profiles of human Mesenchymal Stromal Cells (MSC) from JAK2+ myeloproliferative neoplasms (MPN)
  • organism-icon Homo sapiens
  • sample-icon 24 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Gene 1.0 ST Array (hugene10st)

Description

In this study we analyzed the behavior of bone marrow MSC (BM-MSC) from MPN patients with the mutation in JAK2V617F. We initially characterized the biological function and gene expression profile changes in BM-MSC from MPN patients when compared to BM-MSC of healthy donors (HD). Then, we established co-cultures between MSC cell lines (HTERT and HS5) and the UKE-1 MPN cell line, and performed RT-PCR to study if the leukemic cells were able to modify the genes related to hematopoietic support.

Publication Title

Mesenchymal stromal cells (MSC) from JAK2+ myeloproliferative neoplasms differ from normal MSC and contribute to the maintenance of neoplastic hematopoiesis.

Sample Metadata Fields

Specimen part, Disease stage, Subject

View Samples
accession-icon GSE25067
Gene expression in response to genetic and chemical perturbations of chromatin structure
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Microarray expression profiling was used to identify genes expressed misexpressed in wild-type Arabidopsis seedlings treated with 5-aza-2 deoxyctidine (5AC) or trichostatin A (TSA), and in decrease in dna methylation1 (ddm1) mutant seedlings.

Publication Title

Changes in global gene expression in response to chemical and genetic perturbation of chromatin structure.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP074148
Evolved Repression Overcomes Enhancer Robustness
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Biological systems display extraordinary robustness. Robustness of transcriptional enhancers results mainly from clusters of binding sites for the same transcription factor, and it is not clear how robust enhancers can evolve loss of expression through point mutations. Here, we report the high-resolution functional dissection of a robust enhancer of the shavenbaby gene that has contributed to morphological evolution. We found that robustness is encoded by many binding sites for the transcriptional activator Arrowhead and that, during evolution, some of these activator sites were lost, weakening enhancer activity. Complete silencing of enhancer function, however, required evolution of a binding site for the spatially restricted potent repressor Abrupt. These findings illustrate that recruitment of repressor binding sites can overcome enhancer robustness and may minimize pleiotropic consequences of enhancer evolution. Recruitment of repression may be a general mode of evolution to break robust regulatory linkages. Overall design: 8 samples are analyzed: background GFP- and target GFP+ cells from four independent sortings.

Publication Title

Evolved Repression Overcomes Enhancer Robustness.

Sample Metadata Fields

Specimen part, Subject

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact