refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 204 results
Sort by

Filters

Technology

Platform

accession-icon GSE74224
Discrimination of SIRS from Sepsis in Critically Ill Adults
  • organism-icon Homo sapiens
  • sample-icon 105 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Exon 1.0 ST Array [transcript (gene) version (huex10st)

Description

Background: Systemic inflammation is a whole body reaction that can have an infection-positive (i.e. sepsis) or infection-negative origin. It is important to distinguish between septic and non-septic presentations early and reliably, because this has significant therapeutic implications for critically ill patients. We hypothesized that a molecular classifier based on a small number of RNAs expressed in peripheral blood could be discovered that would: 1) determine which patients with systemic inflammation had sepsis; 2) be robust across independent patient cohorts; 3) be insensitive to disease severity; and 4) provide diagnostic utility. The overall goal of this study was to identify and validate such a molecular classifier. Methods and Findings: We conducted an observational, non-interventional study of adult patients recruited from tertiary intensive care units (ICU). Biomarker discovery was conducted with an Australian cohort (n = 105) consisting of sepsis patients and post -surgical patients with infection-negative systemic inflammation. Using this cohort, a four-gene classifier consisting of a combination of CEACAM4, LAMP1, PLA2G7 and PLAC8 RNA biomarkers was identified. This classifier, designated SeptiCyte Lab, was externally validated using RT-qPCR and receiver operating characteristic (ROC) curve analysis in five cohorts (n = 345) from the Netherlands. Cohort 1 (n=59) consisted of unambiguous septic cases and infection-negative systemic inflammation controls; SeptiCyte Lab gave an area under curve (AUC) of 0.96 (95% CI: 0.91-1.00). ROC analysis of a more heterogeneous group of patients (Cohorts 2-5; 249 patients after excluding 37 patients with infection likelihood possible) gave an AUC of 0.89 (95% CI: 0.85-0.93). Disease severity, as measured by Sequential Organ Failure Assessment (SOFA) score or the Acute Physiology and Chronic Health Evaluation (APACHE) IV score, was not a significant confounding variable. The diagnostic utility o f SeptiCyte Lab was evaluated by comparison to various clinical and laboratory parameters that would be available to a clinician within 24 hours of ICU admission. SeptiCyte Lab was significantly better at differentiating sepsis from infection-negative systemic inflammation than all tested parameters, both singly and in various logistic combinations. SeptiCyte Lab more than halved the diagnostic error rate compared to PCT in all tested cohorts or cohort combinations. Conclusions: SeptiCyte Lab is a rapid molecular assay that may be clinically useful in the management of ICU patients with systemic inflammation.

Publication Title

A Molecular Host Response Assay to Discriminate Between Sepsis and Infection-Negative Systemic Inflammation in Critically Ill Patients: Discovery and Validation in Independent Cohorts.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon SRP144485
Human 5' UTR design and variant effect prediction from a massively parallel translation assay
  • organism-icon Homo sapiens
  • sample-icon 112 Downloadable Samples
  • Technology Badge IconNextSeq 550

Description

Predicting the impact of cis-regulatory sequence on gene expression is a foundational challenge for biology. We combine polysome profiling of hundreds of thousands of randomized 5' UTRs with deep learning to build a predictive model that relates human 5' UTR sequence to translation. Together with a genetic algorithm, we use the model to engineer new 5? UTRs that accurately target specified levels of ribosome loading, providing the ability to tune sequences for optimal protein expression. We show that the same approach can be extended to chemically modified RNA, an important feature for applications in mRNA therapeutics and synthetic biology. We test 35,000 truncated human 5' UTRs and 3,577 naturally-occurring variants and show that the model accurately predicts ribosome loading of these sequences. Finally, we provide evidence of 47 SNVs associated with human diseases that cause a significant change in ribosome loading and thus a plausible molecular basis for disease. Overall design: Polysom profiling and sequencing was performed using a library of 300,000 randomized 5' UTR 50-mers with eGFP used as the CDS. Three RNA chemistries were tested: unmodified, pseudouridine, and 1-methylpseudouridine. These were performed in duplicate (6 samples total). A designed library that includes human 5' UTRs, SNVs, and sequences engineered with a genetic algorithm was used with the eGFP CDS (no duplicate). A second randomized library used mCherry as the CDS, also performed in duplicate.

Publication Title

Human 5' UTR design and variant effect prediction from a massively parallel translation assay.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE52245
Time Course of Young Adults Vaccinated with Meningococcal MCV4 and MPSV4 Vaccines
  • organism-icon Homo sapiens
  • sample-icon 88 Downloadable Samples
  • Technology Badge Icon Affymetrix HT HG-U133+ PM Array Plate (hthgu133pluspm)

Description

We performed systems analyses of immune responses to the meningococcal polysaccharide (MPSV4) and conjugate (MCV4) vaccines in healthy adults.

Publication Title

Molecular signatures of antibody responses derived from a systems biology study of five human vaccines.

Sample Metadata Fields

Specimen part, Treatment, Time

View Samples
accession-icon SRP032775
Molecular Hallmarks of Naturally Acquired Immunity to Malaria
  • organism-icon Homo sapiens
  • sample-icon 232 Downloadable Samples
  • Technology Badge IconIlluminaHiSeq2000

Description

Immunity to malaria can be acquired through natural exposure to Plasmodium falciparum (Pf), but only after years of repeated infections. Typically, this immunity is acquired by adolescence and confers protection against disease, but not Pf infection per se. Efforts to understand the mechanisms of this immunity are integral to the development of a vaccine that would mimic the induction of adult immunity in children. The current study applies transcriptomic analyses to a cohort from the rural village of Kalifabougou, Mali, where Pf transmission is intense and seasonal. Signatures that correlate with protection from malaria may yield new hypotheses regarding the biological mechanisms through which malaria immunity is induced by natural Pf infection. The resulting datasets will be of considerable value in the urgent worldwide effort to develop a malaria vaccine that could prevent more than a million deaths annually. Overall design: 108 samples; paired pre- and post-challenge for 54 individuals 198 samples; paired pre- and post-challenge for 99 individuals

Publication Title

Transcriptomic evidence for modulation of host inflammatory responses during febrile Plasmodium falciparum malaria.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE30101
Genome-wide profiling of whole blood from healthy adult volunteers before and after receiving non-live vaccines including seasonal influenza or pneumococcal vaccine or placebo (saline) injections
  • organism-icon Homo sapiens
  • sample-icon 693 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Systems scale interactive exploration reveals quantitative and qualitative differences in response to influenza and pneumococcal vaccines.

Sample Metadata Fields

Sex, Age, Race, Subject

View Samples
accession-icon GSE48762
Genome-wide profiling of whole blood from healthy adult volunteers before and after receiving non-live vaccines including seasonal influenza or pneumococcal vaccine or placebo (saline) injections II
  • organism-icon Homo sapiens
  • sample-icon 621 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

The objective of this study is to: 1) Characterize the immune responsiveness to administration of non-live vaccines in three cohorts of healthy adult subjects through the analysis of blood leukocytes transcriptional profiles. 2) Validate whole blood transcriptional profiles generated from standard 3mL blood draws versus 200uL blood draws obtained by finger stick. 3) Discover potential biomarkers for immune-responsiveness to non-live vaccines.

Publication Title

Systems scale interactive exploration reveals quantitative and qualitative differences in response to influenza and pneumococcal vaccines.

Sample Metadata Fields

Sex, Age, Race, Subject

View Samples
accession-icon GSE30059
Genome-wide profiling of whole blood from healthy adult volunteers before and after receiving non-live vaccines including seasonal influenza or pneumococcal vaccine or placebo (saline) injections I
  • organism-icon Homo sapiens
  • sample-icon 72 Downloadable Samples
  • Technology Badge IconIllumina HumanHT-12 V3.0 expression beadchip

Description

The objective of this study is to: 1) Characterize the cellular origin of transciptional signatures observed on day 1 after vaccination with 2009/10 seasonal influenza and pneumococcal vaccine discovered by transcriptional profiling of whole blood samples in data set WholeBlood_SysVax. 2) Discover potential biomarkers for immune-responsiveness to non-live vaccines.

Publication Title

Systems scale interactive exploration reveals quantitative and qualitative differences in response to influenza and pneumococcal vaccines.

Sample Metadata Fields

Sex, Age, Race, Subject

View Samples
accession-icon SRP101737
Genome Scale Analysis of miRNA and mRNA regulation during preterm labor [whole blood]
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The goal of this study was to define relationships between peripheral blood miRNAs and mRNAs of women undergoing idiopathic preterm labor (PTL) and compare network level changes to control women that deliver at term.Using RNA Sequencing we have performed global miRNA and mRNA profiling in both monocytes and whole blood leukocytes of women who underwent PTL (N=15) matched to non-pathological controls (N=30) as a part of the Ontario Birth Study cohort. We have identified differentially expressed miRNAs, mRNAs and pathways associated with PTL. Intriguingly, we found perturbations in many cellular signaling pathways, particularly in interleukin signaling. We also predicted mRNA targets for specific miRNAs and used these predictions to build putative miRNA-mRNA networks. We identified 6 miRNAs significantly associated with PTL whose expression is negatively correlated with expression of 14 predicted mRNA targets that are also significantly associated with PTL. Overall design: miRNA and mRNA were quantified from whole blood and monocytes of women undergoing spontaneous preterm labor compared to nonlabor controls matched on gestational age

Publication Title

Comparative analysis of gene expression in maternal peripheral blood and monocytes during spontaneous preterm labor.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE20744
The activation potential of MOF is constrained for dosage compensation, MBD-R2 transcriptome analysis
  • organism-icon Drosophila melanogaster
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Drosophila Genome 2.0 Array (drosophila2)

Description

The H4K16 acetyltransferase MOF plays a crucial role in dosage compensation in Drosophila, but has additional, global functions in gene control. We compared the molecular context and effect of MOF activity in male and female flies combining chromosome-wide mapping and transcriptome studies with analyses of defined reporter loci in transgenic flies. MOF distributes dynamically between two types of complexes, the Dosage Compensation Complex (DCC) and complexes containing MBD-R2, a global facilitator of transcription. These different targeting principles define the distribution of MOF between the X chromosome and autosomes and at transcription units with 5 or 3 enrichment.

Publication Title

The activation potential of MOF is constrained for dosage compensation.

Sample Metadata Fields

Cell line

View Samples
accession-icon GSE26568
Impact of KLF2 expression on T cell genetic program
  • organism-icon Mus musculus
  • sample-icon 6 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

On triggering of the T cell receptor CD8 T lymphocytes downregulate expression of the transcription factor KLF2. KLF2 expression remains low as these cells differentiate to Cytotoxic T lymphocytes (CTL) but may be re-expressed depending on the local environmental signals.

Publication Title

The impact of KLF2 modulation on the transcriptional program and function of CD8 T cells.

Sample Metadata Fields

Specimen part

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact