refine.bio
  • Search
      • Normalized Compendia
      • RNA-seq Sample Compendia
  • Docs
  • About
  • My Dataset
github link
Showing
of 204 results
Sort by

Filters

Technology

Platform

accession-icon GSE12786
FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast
  • organism-icon Saccharomyces cerevisiae
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Yeast Genome S98 Array (ygs98)

Description

The budding yeast, Saccharomyces cerevisiae, has emerged as an archetype of eukaryotic cell biology. Here we show that S. cerevisiae is also a model for the evolution of cooperative behavior by revisiting flocculation, a self-adherence phenotype lacking in most laboratory strains. Expression of the gene FLO1 in the laboratory strain S288C restores flocculation, an altered physiological state, reminiscent of bacterial biofilms. Flocculation protects the FLO1-expressing cells from multiple stresses, including antimicrobials and ethanol. Furthermore, FLO1+ cells avoid exploitation by non-expressing flo1 cells by self/non-self recognition: FLO1+ cells preferentially stick to one another, regardless of genetic relatedness across the rest of the genome. Flocculation, therefore, is driven by one of a few known green beard genes, which direct cooperation towards other carriers of the same gene. Moreover, FLO1 is highly variable among strains both in expression and in sequence, suggesting that flocculation in S. cerevisiae is a dynamic, rapidly-evolving social trait.

Publication Title

FLO1 is a variable green beard gene that drives biofilm-like cooperation in budding yeast.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE38321
DEPTOR cell-autonomously promotes adipogenesis and associates with obesity
  • organism-icon Mus musculus
  • sample-icon 10 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Gene 1.0 ST Array (mogene10st)

Description

An understanding of the mechanisms regulating white adipose tissue (WAT) formation is key for developing of new tools to treat obesity and its related diseases. Here, we identify DEPTOR as a positive regulator of adipogenesis whose expression is associated with obesity. In a polygenic mouse model of obesity/leanness, Deptor is part of the Fob3a QTL linked to obesity and we fine that Deptor is the highest priority candidate gene regulating WAT accumulation in this model. Using a doxycycline-inducible mouse model for Deptor overexpression, we confirmed that Deptor promotes WAT expansion in vivo. DEPTOR expression is elevated in WAT of obese humans and strongly correlates with the degree of obesity. We show that DEPTOR is induced during adipogenesis and that its overexpression cell-autonomously promotes, while its suppression blocks, adipogenesis. DEPTOR positively regulates adipogenesis by promoting the activity of the pro-adipogenic factors Akt/PKB and PPAR-gamma. These results establish DEPTOR as a physiological regulator of adipogenesis and provide new insights into the molecular mechanisms controlling WAT formation.

Publication Title

DEPTOR cell-autonomously promotes adipogenesis, and its expression is associated with obesity.

Sample Metadata Fields

Sex, Specimen part

View Samples
accession-icon SRP101737
Genome Scale Analysis of miRNA and mRNA regulation during preterm labor [whole blood]
  • organism-icon Homo sapiens
  • sample-icon 33 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2500

Description

The goal of this study was to define relationships between peripheral blood miRNAs and mRNAs of women undergoing idiopathic preterm labor (PTL) and compare network level changes to control women that deliver at term.Using RNA Sequencing we have performed global miRNA and mRNA profiling in both monocytes and whole blood leukocytes of women who underwent PTL (N=15) matched to non-pathological controls (N=30) as a part of the Ontario Birth Study cohort. We have identified differentially expressed miRNAs, mRNAs and pathways associated with PTL. Intriguingly, we found perturbations in many cellular signaling pathways, particularly in interleukin signaling. We also predicted mRNA targets for specific miRNAs and used these predictions to build putative miRNA-mRNA networks. We identified 6 miRNAs significantly associated with PTL whose expression is negatively correlated with expression of 14 predicted mRNA targets that are also significantly associated with PTL. Overall design: miRNA and mRNA were quantified from whole blood and monocytes of women undergoing spontaneous preterm labor compared to nonlabor controls matched on gestational age

Publication Title

Comparative analysis of gene expression in maternal peripheral blood and monocytes during spontaneous preterm labor.

Sample Metadata Fields

Subject

View Samples
accession-icon GSE57101
Spontaneous Elimination of Intraocular Tumors is Associated with IFN- and Fas/FasL-Dependent Activation of Macrophages
  • organism-icon Mus musculus
  • sample-icon 4 Downloadable Samples
  • Technology Badge Icon Affymetrix Mouse Genome 430 2.0 Array (mouse4302)

Description

Ocular immune privilege (IP) limits immune surveillance of intraocular tumors as certain immunogenic tumor cell lines (P815, E.G7-OVA) that are rejected when transplanted in the skin grow progressively when placed in the anterior chamber (a.c.) of the eye. As splenectomy (SPLNX) is known to terminate ocular IP, we characterized immune mechanisms responsible for spontaneous rejection of intraocular tumors in SPLNX mice as a first step toward identifying how to restore tumoricidal activity within the eye. Microarray data showed a 3-fold increase in interferon (IFN)- and a 2.7-fold increase in Fas ligand (FasL). There was a robust increase in transcripts (127 of 408 surveyed) from interferon (IFN)-stimulated genes and a marked decrease (in 40 of 192 surveyed) in the expression of cell-cycle-associated genes. Non-microarray data confirmed that IFN, FasL and CD8+ T cells but not perforin or TNF were required for elimination of intraocular E.G7-OVA tumors that culminated in destruction of the eye (ocular phthsis). IFN and FasL did not target tumor cells directly as the majority of SPLNX IFNR1-/- mice and Fas-defective lpr mice failed to eliminate ocular E.G7-OVA tumors that expressed Fas and IFNR1. Bone marrow chimeras showed that immune cell expression of IFNR1 and Fas was critical and that SPLNX increased the frequency of activated macrophages within ocular tumors in an IFN- and Fas/FasL-dependent manner. Rejection of intraocular tumors was associated with increased ocular mRNA expression of several inflammatory genes including FasL, NOS2, CXCL2 and T-bet. Our data support a model in which IFN- and Fas/FasL-dependent activation of intratumoral macrophage by CD8+ T cells promotes severe intraocular inflammation that indirectly eliminates intraocular tumors by inducing phthisis. The immunosuppressive mechanisms which maintain ocular IP likely interfere with the interaction between CD8+ T cells and macrophage to limit immunosurveillance of intraocular tumors.

Publication Title

Splenectomy promotes indirect elimination of intraocular tumors by CD8+ T cells that is associated with IFNγ- and Fas/FasL-dependent activation of intratumoral macrophages.

Sample Metadata Fields

Specimen part, Treatment

View Samples
accession-icon GSE61513
Expression data from SKOV3ip1 cells treated with MORAB-003 antibody
  • organism-icon Homo sapiens
  • sample-icon 15 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

MORAB-003 significantly upregulated a number of genes involved in autophagic processing, including GABARAPL2, LC3II (MAP1LC3B), ATG3, ATG4B, and BECN1, while expression of the oncogenic factor PIK3C3 was downregulated.

Publication Title

Immunotherapy targeting folate receptor induces cell death associated with autophagy in ovarian cancer.

Sample Metadata Fields

Specimen part, Cell line

View Samples
accession-icon GSE25067
Gene expression in response to genetic and chemical perturbations of chromatin structure
  • organism-icon Arabidopsis thaliana
  • sample-icon 12 Downloadable Samples
  • Technology Badge Icon Affymetrix Arabidopsis ATH1 Genome Array (ath1121501)

Description

Microarray expression profiling was used to identify genes expressed misexpressed in wild-type Arabidopsis seedlings treated with 5-aza-2 deoxyctidine (5AC) or trichostatin A (TSA), and in decrease in dna methylation1 (ddm1) mutant seedlings.

Publication Title

Changes in global gene expression in response to chemical and genetic perturbation of chromatin structure.

Sample Metadata Fields

Specimen part

View Samples
accession-icon SRP074148
Evolved Repression Overcomes Enhancer Robustness
  • organism-icon Drosophila melanogaster
  • sample-icon 8 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 2000

Description

Biological systems display extraordinary robustness. Robustness of transcriptional enhancers results mainly from clusters of binding sites for the same transcription factor, and it is not clear how robust enhancers can evolve loss of expression through point mutations. Here, we report the high-resolution functional dissection of a robust enhancer of the shavenbaby gene that has contributed to morphological evolution. We found that robustness is encoded by many binding sites for the transcriptional activator Arrowhead and that, during evolution, some of these activator sites were lost, weakening enhancer activity. Complete silencing of enhancer function, however, required evolution of a binding site for the spatially restricted potent repressor Abrupt. These findings illustrate that recruitment of repressor binding sites can overcome enhancer robustness and may minimize pleiotropic consequences of enhancer evolution. Recruitment of repression may be a general mode of evolution to break robust regulatory linkages. Overall design: 8 samples are analyzed: background GFP- and target GFP+ cells from four independent sortings.

Publication Title

Evolved Repression Overcomes Enhancer Robustness.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon SRP157943
The single cell RNA seq of PDGFRa-GFP+ cells in mouse lung
  • organism-icon Mus musculus
  • sample-icon 2 Downloadable Samples
  • Technology Badge IconIllumina HiSeq 4000

Description

Pdgfra-expressing (Pdgfra+) cells have been implicated as progenitors in many mesenchymal tissues. To further characterize Pdgfra+ cells during alveologensis, we performed single-cell RNA sequencing (scRNA-Seq) analysis using fluorescence-activated cell sorting (FACS) sorted GFP+ cells from Pdgfra-GFP lungs at P7 and P15. Overall design: We perfomed 10X genomics single-cell RNA-seq of Pdgfra-GFP+ cells at P7 and P15

Publication Title

<i>Pdgfra</i> marks a cellular lineage with distinct contributions to myofibroblasts in lung maturation and injury response.

Sample Metadata Fields

Specimen part, Subject

View Samples
accession-icon GSE33588
Human-specific patterns of gene expression in the brain
  • organism-icon Macaca mulatta, Pan troglodytes, Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

This SuperSeries is composed of the SubSeries listed below.

Publication Title

Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution.

Sample Metadata Fields

No sample metadata fields

View Samples
accession-icon GSE33010
Human-specific patterns of gene expression in the brain (Arrays)
  • organism-icon Macaca mulatta, Pan troglodytes, Homo sapiens
  • sample-icon 29 Downloadable Samples
  • Technology Badge Icon Affymetrix Human Genome U133 Plus 2.0 Array (hgu133plus2)

Description

We identified human-specific gene expression patterns in the brain by comparing expression with chimpanzee and rhesus macaque

Publication Title

Divergent whole-genome methylation maps of human and chimpanzee brains reveal epigenetic basis of human regulatory evolution.

Sample Metadata Fields

No sample metadata fields

View Samples
...

refine.bio is a repository of uniformly processed and normalized, ready-to-use transcriptome data from publicly available sources. refine.bio is a project of the Childhood Cancer Data Lab (CCDL)

fund-icon Fund the CCDL

Developed by the Childhood Cancer Data Lab

Powered by Alex's Lemonade Stand Foundation

Cite refine.bio

Casey S. Greene, Dongbo Hu, Richard W. W. Jones, Stephanie Liu, David S. Mejia, Rob Patro, Stephen R. Piccolo, Ariel Rodriguez Romero, Hirak Sarkar, Candace L. Savonen, Jaclyn N. Taroni, William E. Vauclain, Deepashree Venkatesh Prasad, Kurt G. Wheeler. refine.bio: a resource of uniformly processed publicly available gene expression datasets.
URL: https://www.refine.bio

Note that the contributor list is in alphabetical order as we prepare a manuscript for submission.

BSD 3-Clause LicensePrivacyTerms of UseContact